


**CONTINENTAL HYDRAULICS** 

# POWERFLOW<sup>M</sup> PVX VANE PUMPS





### POWERFLOW<sup>TM</sup> PVX VANE PUMPS

### YOUR SOURCE FOR VANE PUMPS FOR THE MOST DEMANDING APPLICATIONS.

## What Makes PowrFlow PVX Vane Pumps Your Best Buy?

Continental Hydraulics PowrFlow™
PVX Vane Pumps deliver the
rugged, reliable performance and
value you've come to expect in
all our products. They outperform
sensitive piston pumps in harsh
environments. PVX Vane Pumps
deliver faster response, and
require less external compensation
compared to fixed
displacement
designs.





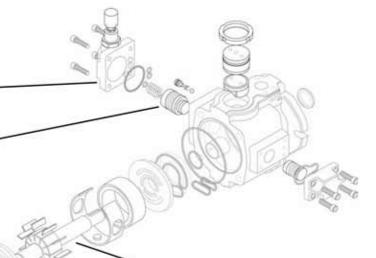


Use PVX Vane pumps in tough applications such as on machine tools, in steel mills and mines, in shipyards and foundries, in automobile plants and textile mills, in pulp and paper mills, or any place else where reliable and economical hydraulic power is needed.

#### Features and Benefits

- 3000 PSI Rated at Full Rated Flow on most models 8 to 75 GPM Sizes
- Compact Design saves valuable space on your product, or in your power room.
- Pressure Compensation adjusts pump delivery to demand to save energy.
- Fast Response 20 to 50 ms depending on model.
- Fast Recovery 70 to 500 ms at minimum flow, depending on model.
- 100% Tested
- Quiet Operation
- Three Year Warranty

### Compensator Options for All Kinds of Applications


- Single Stage
- Two Stage
- · Load Sensing
- · Two Pressure
- · Torque Limiting

### Hydraulic Centering Pads

Hydraulic pressure operated pistons keep the pressure ring centered to reduce wear and noise.

### Tandem Pump Capability

Available with splined shaft and tandem mount cover.



Heavy Forged One-Piece Rotor Shaft

Built strong and rigid to take system loads with minimal deflection, for increased pump life.

#### Hydrodynamic Journal Bearings

There's no shaft-to-bearing contact, so pump life is virtually unlimited - not determined by B-10 rating.

### PVX SERIES VANE PUMPS



### TABLE OF CONTENTS

| Introduction and Benefits                           | 2     |
|-----------------------------------------------------|-------|
| PVX-8 Performance Specifications                    | 3     |
| PVX-8 Performance Graphs                            | 4     |
| PVX-8 Dimension Drawings                            | 5-6   |
| PVX-8 Code Sheet                                    | 7     |
| PVX-11 Performance Specifications                   | 8     |
| PVX-11 Performance Graphs                           | 9     |
| PVX-15 Performance Specifications                   | 10    |
| PVX-15 Performance Graphs                           | 11    |
|                                                     | 12-14 |
| PVX-11/15 Code Sheet                                | 15    |
| PVX-20 Performance Specifications                   | 16    |
| PVX-20 Performance Graphs                           | 17    |
| PVX-29 Performance Specifications                   | 18    |
| PVX-29 Performance Graphs                           | 19    |
| PVX-36 Performance Specifications                   | 20    |
| PVX-36 Performance Graphs                           | 21    |
|                                                     | 22-23 |
| PVX-20/29/36 Code Sheet                             | 24    |
| PVX-46 Performance Specifications                   | 25    |
| PVX-46 Performance Graphs                           | 26    |
| PVX-60 Performance Specifications                   | 27    |
| PVX-60 Performance Graphs                           | 28    |
| PVX-75 Performance Specifications                   | 29    |
| PVX-75 Performance Graphs                           | 30    |
|                                                     | 31-32 |
| PVX-46/60/75 Code Sheet                             | 33    |
|                                                     |       |
| Adapter Kits - Combinations Using "P1" Pumps        | 34    |
| Front Pump and Adapter Dimension Drawing            | 35    |
| Through Drive Horsepower                            | 35    |
|                                                     | 36-37 |
| Reaction Characteristics and Shock Clipper Function | 38    |
| PVX-8/11/15 Repair Parts - Compensators             | 39    |
| PVX-20/29/36/46/60/75 Repair Parts - Compensator    | 40    |
| Stroke Limiter Adjustment Chart                     | 41    |
| PVX-8/11/15 Repair Parts Kits                       | 42    |
| PVX-8/11/15 Repair Parts -                          |       |
| Bearing Installation                                | 43    |
| Torque Ratings                                      | 43    |
| PVX-20/29/36/46/60/75 Repair Parts Kits             | 44    |
| Vane Tip Orientation                                | 45    |
| Trouble Shooting                                    | 46    |
| PVX Vane Pumps are Designed to be Quiet             | 47    |



### **PVX SERIES VANE PUMPS**

#### INTRODUCTION AND BENEFITS

This catalog introduces a new line of enhanced performance variable displacement pressure compensated vane pumps from Continental Hydraulics. Sizes range from 8 to 36 gpm; 3000 psi in "A", "B", or "C" SAE mounts and 46 to 75 gpm; 2500 psi in "D" SAE mount.

The pumps are designed to meet requirements of the machine tool, general machinery and other markets where low noise, high performance and competitive pricing are needed.

Note these improvements and features:

- Continuous duty ratings.
- Speed range 1150, 1450 and 1750 rpm.
- High efficiency at full flow.
- Quiet operation.
- Modern appearance.
- Improved ring and vane wear.
- Fast response and recovery times.
- Reduced envelope size.
- Improved controls with shock clipper.
- Conforms to the latest SAE, ISO, NFPA and ANSI standards.
- Allows full horsepower transference to pump 2 on tandem mounted pumps.
- 3 year warranty.

#### Benefits include:

- Competitively priced with other manufacturers of vane and axial piston pumps.
- Reduced sound levels help meet government and purchased sound requirements.
- High performance and long life design.
- Fast reaction time for critical system demands.
- Pressure compensated pumps controls delivery to circuit demands thereby conserving energy.
- Hydrodynamic journal bearings provide long life and quiet operation.
   Repair kits are available from local distributor or the factory.
- Control option include single stage, two stage; load sensing, and torque limiting on most models.
- Shock clipper reduces shock pressure increasing system component life and stability.

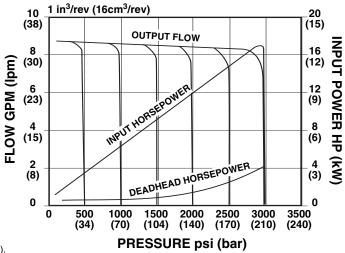


### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED



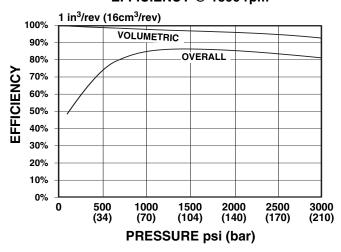
#### PERFORMANCE SPECIFICATIONS

| Displacement (Nominal)                       |                 | 1 in <sup>3</sup> /rev. (16 cm <sup>3</sup> /rev.)     |
|----------------------------------------------|-----------------|--------------------------------------------------------|
| Displacement (Actual)                        |                 | 1.06 in <sup>3</sup> /rev.(16.8 cm <sup>3</sup> /rev.) |
| Flow at 1750 rpm*                            |                 | 7.57 gpm (28.6 l/min.)                                 |
| Maximum continuous pro                       | essure          | 3000 psi (210 bar)                                     |
|                                              | Single stage    | 200-3000 psi (14-210 bar)                              |
| Pressure compensating                        |                 | Minimum 190 psi (13 bar)                               |
| range                                        | Two stage       | 300-3000 psi (21-210 bar)<br>Minimum 290 psi (19 bar)  |
| Mandana and and and                          |                 | . , ,                                                  |
| Maximum transient spike                      | pressure        | 3800 psi (260 bar)                                     |
| Maximum case pressure                        |                 | 10 psi (0.7 bar)                                       |
| Speed range                                  |                 | 1150 - 1800 rpm                                        |
| Direction of rotation (view                  | ved shaft end)  | Right hand (clockwise)                                 |
| Case drain flow 1000 psi (70 bar)            |                 | 0.6 gpm (2.3 l/min.)                                   |
| while compensating 2000 psi (140 bar)        |                 | 0.9 gpm (3.4 l/min.)                                   |
| at 1800 rpm 3000                             | psi (210 bar)   | 1.26 gpm (4.8 l/min.)                                  |
| Maximum inlet vacuum at sea level            |                 | 6 inches Hg (152 mm Hg)                                |
| Mounting - SAE 2 bolt flange<br>(ISO 3019/1) |                 | S.A.E 'A' - 2 bolt flange                              |
| Mounting position                            |                 | Unrestricted                                           |
|                                              | Inlet           | #16 S.A.E.                                             |
|                                              | Outlet          | #12 S.A.E.                                             |
| Port sizes                                   | Case drain      | #8 S.A.E.                                              |
| Clipper contr                                | ol drain (opt.) | #6 S.A.E.                                              |
| Remote control (opt.)                        |                 | #4 S.A.E.                                              |
|                                              | Minimum         | 100 SUS (21 cSt)                                       |
| Fluid viscosity at Maximum                   |                 | 1000 SUS (216 cSt)                                     |
| operating temperature Optimum                |                 | 150-250 SUS (32-54 cSt)                                |
| Maximum start-up                             |                 | 4000 SUS (864 cSt)                                     |
| Seals                                        |                 | Standard fluorocarbon                                  |

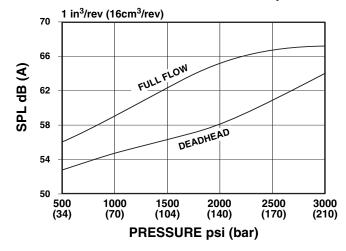

| Response time (Circuit dependent)    | Full flow to minimum flow    | 20-35 ms                                |
|--------------------------------------|------------------------------|-----------------------------------------|
| Response time<br>(Circuit dependent) | Minimum flow<br>to full flow | 50-135 ms -<br>single stage compensator |
| Weight                               | Single stage                 | 34 lbs. (16.5 kg)                       |
| vveigni                              | Two stage                    | 38 lbs. (17.3 kg)                       |

<sup>\*</sup> Flows are actual. Volumetric efficiencies shown in technical data are taken into account.

- **DRIVE** Pump to be connected to prime mover by means of a flexible coupling that is aligned to a maximum of .006" (.152 mm) total indicator reading. No overhung or side loads permitted. Alignments greater than .006" (.152 mm) indicator reading could cause increased noise and vibration as well as premature shaft seal wear resulting in leakage.
- FLUID RECOMMENDATIONS A premium quality hydraulic oil with anti-wear additives is recommended, but not required. Consult factory for use with water base fire resistant fluids.
- FLUID TEMPERATURE Normal inlet fluid temperature should not exceed 140° F. (60° C.). Always select a fluid for optimum viscosity at operating temperature. Consult factory for applications assistance when inlet fluid temperatures over 140° F. (60° C.) are expected.
- FILTRATION Fluid cleanliness per ISO/DIS 4406 should be 18/15 or better for pressures of 2000 psi (140 bar) or less. For continuous operating pressures of 2000 to 3000 psi (140 to 210 bar), fluid cleanliness should be 17/13 or better.


### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

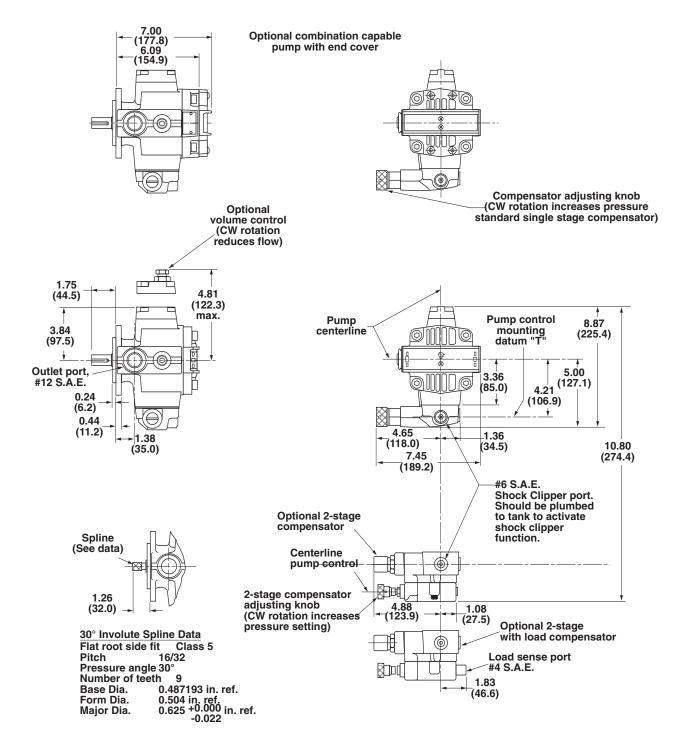





Data plotted: With oil at 120° F. (49° C.). Viscosity @ 120° F. (49° C.) = 140 SUS.

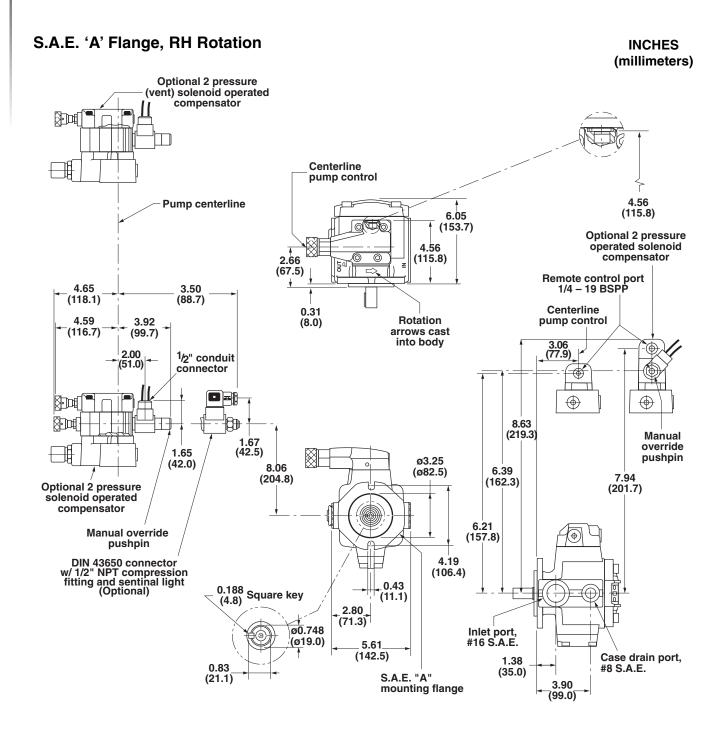
### **EFFICIENCY @ 1800 rpm**




### SOUND PRESSURE @ 1800 rpm

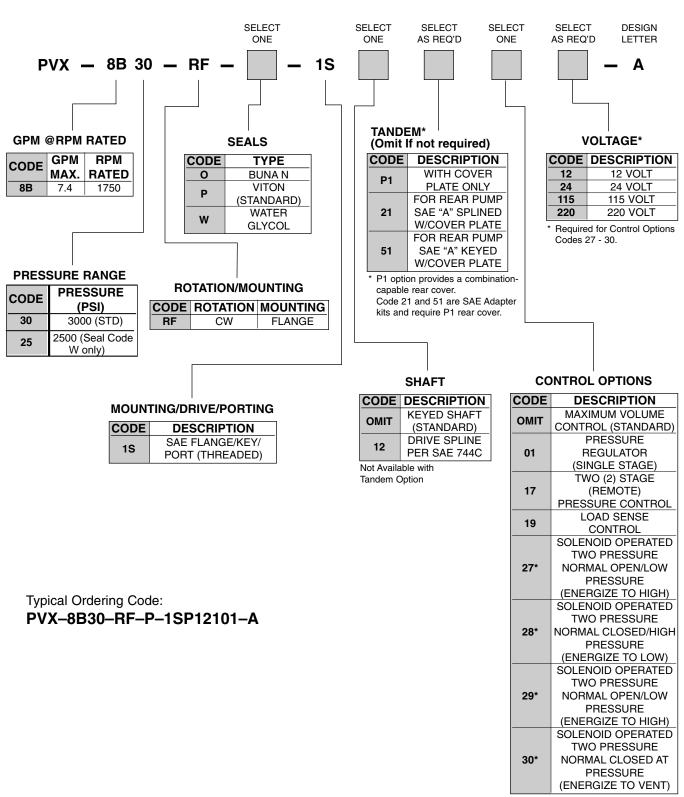





### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

### S.A.E. 'A' Flange, RH Rotation






### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED





#### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED



<sup>\*</sup> Requires voltage selection.



### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

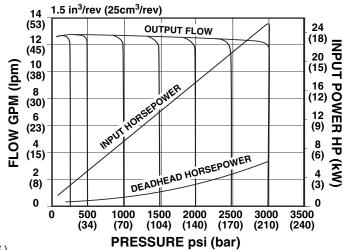


NOTE: See pages 12 thru 14 for PVX-11 dimensions.

#### PERFORMANCE SPECIFICATIONS

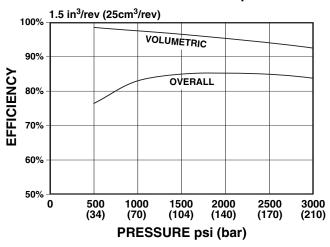
| Displacement (Nominal)                       |                            | 1.5 in <sup>3</sup> /rev. (25 cm <sup>3</sup> /rev.)   |                                                       |
|----------------------------------------------|----------------------------|--------------------------------------------------------|-------------------------------------------------------|
| Displacement (Actual)                        |                            | 1.66 in <sup>3</sup> /rev.(27.4 cm <sup>3</sup> /rev.) |                                                       |
| Flow at 1750 rpm*                            |                            | 11.36 gpm (43.0 l/min.)                                |                                                       |
| Maximum c                                    | ontinuous pre              | essure                                                 | 3000 psi (210 bar)                                    |
| Pressure co                                  | mpensating                 | Single stage                                           | 200-3000 psi (14-210 bar)<br>Minimum 190 psi (13 bar) |
| range                                        |                            | Two stage                                              | 300-3000 psi (21-210 bar)<br>Minimum 290 psi (19 bar) |
| Maximum tr                                   | ansient spike              | pressure                                               | 4000 psi (280 bar)                                    |
| Maximum c                                    | ase pressure               |                                                        | 10 psi (0.7 bar)                                      |
| Speed rang                                   | е                          |                                                        | 1150 - 1800 rpm                                       |
| Direction of                                 | rotation (view             | ed shaft end)                                          | Right hand (clockwise)                                |
| Case drain                                   | flow 100                   | 0 psi (70 bar)                                         | 0.6 gpm (2.3 l/min.)                                  |
| while compensating 2000 psi (140 bar)        |                            | 1.1 gpm (4.2 l/min.)                                   |                                                       |
| at 1800 rpm                                  | 3000                       | psi (210 bar)                                          | 1.4 gpm (5.3 l/min.)                                  |
| Maximum inlet vacuum at sea level            |                            | 6 inches Hg (152 mm Hg)                                |                                                       |
| Mounting - SAE 2 bolt flange<br>(ISO 3019/1) |                            | S.A.E 'B' - 2 bolt flange                              |                                                       |
| Mounting position                            |                            | Unrestricted                                           |                                                       |
|                                              |                            | Inlet                                                  | #24 S.A.E.                                            |
|                                              |                            | Outlet                                                 | #16 S.A.E.                                            |
| Port sizes                                   |                            | Case drain                                             | #8 S.A.E.                                             |
|                                              | Clipper contr              | ol drain (opt.)                                        | #6 S.A.E.                                             |
| Remote control (opt.)                        |                            | #4 S.A.E.                                              |                                                       |
|                                              |                            | Minimum                                                | 100 SUS (21 cSt)                                      |
| Fluid viscos                                 | Fluid viscosity at Maximum |                                                        | 1000 SUS (216 cSt)                                    |
| operating te                                 | emperature                 | Optimum                                                | 150-250 SUS (32-54 cSt)                               |
| Maximum start-up                             |                            | 4000 SUS (864 cSt)                                     |                                                       |
| Seals                                        |                            | Standard fluorocarbon                                  |                                                       |
|                                              |                            |                                                        |                                                       |

| Response time<br>(Circuit dependent) | Full flow to minimum flow    | 20-35 ms                                |
|--------------------------------------|------------------------------|-----------------------------------------|
| Response time<br>(Circuit dependent) | Minimum flow<br>to full flow | 70-185 ms -<br>single stage compensator |
| Weight                               | Single stage<br>Two stage    | 61 lbs. (27.7 kg)<br>65 lbs. (29.4 kg)  |

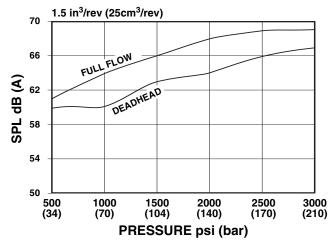

<sup>\*</sup> Flows are actual. Volumetric efficiencies shown in technical data are taken into account.

- **DRIVE** Pump to be connected to prime mover by means of a flexible coupling that is aligned to a maximum of .006" (.152 mm) total indicator reading. No overhung or side loads permitted. Alignments greater than .006" (.152 mm) indicator reading could cause increased noise and vibration as well as premature shaft seal wear resulting in leakage.
- FLUID RECOMMENDATIONS A premium quality hydraulic oil with anti-wear additives is recommended, but not required. Consult factory for use with water base fire resistant fluids.
- FLUID TEMPERATURE Normal inlet fluid temperature should not exceed 140° F. (60° C.). Always select a fluid for optimum viscosity at operating temperature. Consult factory for applications assistance when inlet fluid temperatures over 140° F. (60° C.) are expected.
- FILTRATION Fluid cleanliness per ISO/DIS 4406 should be 18/15 or better for pressures of 2000 psi (140 bar) or less. For continuous operating pressures of 2000 to 3000 psi (140 to 210 bar), fluid cleanliness should be 17/13 or better.




### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

#### **OUTPUT FLOW & POWER @ 1800 rpm**




Data plotted: With oil at 120° F. (49° C.). Viscosity @ 120° F. (49° C.) = 140 SUS.

#### **EFFICIENCY @ 1800 rpm**



### SOUND PRESSURE @ 1800 rpm





### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

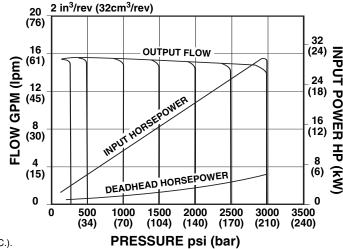


NOTE: See pages 12 thru 14 for PVX-15 dimensions.

### PERFORMANCE SPECIFICATIONS

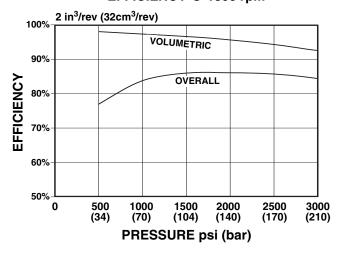
| Displacement (Nominal)                       |                 | 2 in <sup>3</sup> /rev. (32 cm <sup>3</sup> /rev.)    |
|----------------------------------------------|-----------------|-------------------------------------------------------|
| Displacement (Actual)                        |                 | 2.04 in <sup>3</sup> /rev. (32 cm <sup>3</sup> /rev.) |
| Flow at 1750 rpm*                            |                 | 15.15 gpm (57.3 l/min.)                               |
| Maximum continuous pre                       | essure          | 3000 psi (210 bar)                                    |
|                                              | Single stage    | 200-3000 psi (14-210 bar)                             |
| Pressure compensating                        | Olligic stage   | Minimum 190 psi (13 bar)                              |
| range                                        | Two stone       | 300-3000 psi (21-210 bar)                             |
|                                              | Two stage       | Minimum 290 psi (19 bar)                              |
| Maximum transient spike                      | pressure        | 4000 psi (280 bar)                                    |
| Maximum case pressure                        |                 | 10 psi (0.7 bar)                                      |
| Speed range                                  |                 | 1150 - 1800 rpm                                       |
| Direction of rotation (view                  | ed shaft end)   | Right hand (clockwise)                                |
| Case drain flow 1000 psi (70 bar)            |                 | 0.6 gpm (2.3 l/min.)                                  |
| while compensating 2000 psi (140 bar)        |                 | 1.1 gpm (4.2 l/min.)                                  |
| at 1800 rpm 3000                             | psi (210 bar)   | 1.4 gpm (5.3 l/min.)                                  |
| Maximum inlet vacuum at sea level            |                 | 6 inches Hg (152 mm Hg)                               |
| Mounting - SAE 2 bolt flange<br>(ISO 3019/1) |                 | S.A.E 'B' - 2 bolt flange                             |
| Mounting position                            |                 | Unrestricted                                          |
|                                              | Inlet           | #24 S.A.E.                                            |
|                                              | Outlet          | #16 S.A.E.                                            |
| Port sizes                                   | Case drain      | #8 S.A.E.                                             |
| Clipper contr                                | ol drain (opt.) | #6 S.A.E.                                             |
| Remote control (opt.)                        |                 | #4 S.A.E.                                             |
|                                              | Minimum         | 100 SUS (21 cSt)                                      |
| Fluid viscosity at                           | Maximum         | 1000 SUS (216 cSt)                                    |
| operating temperature Optimum                |                 | 150-250 SUS (32-54 cSt)                               |
| Maximum start-up                             |                 | 4000 SUS (864 cSt)                                    |
| Seals                                        |                 | Standard fluorocarbon                                 |

| Response time<br>(Circuit dependent) | Full flow to minimum flow    | 20-35 ms                                |
|--------------------------------------|------------------------------|-----------------------------------------|
| Response time<br>(Circuit dependent) | Minimum flow<br>to full flow | 70-185 ms -<br>single stage compensator |
| Weight                               | Single stage<br>Two stage    | 61 lbs. (27.7 kg)<br>65 lbs. (29.4 kg)  |

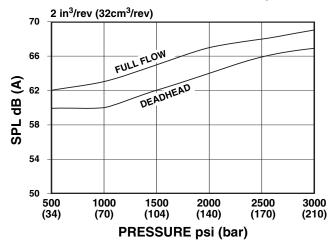

Flows are actual. Volumetric efficiencies shown in technical data are taken into account.

- **DRIVE** Pump to be connected to prime mover by means of a flexible coupling that is aligned to a maximum of .006" (.152 mm) total indicator reading. No overhung or side loads permitted. Alignments greater than .006" (.152 mm) indicator reading could cause increased noise and vibration as well as premature shaft seal wear resulting in leakage.
- FLUID RECOMMENDATIONS A premium quality hydraulic oil with anti-wear additives is recommended, but not required. Consult factory for use with water base fire resistant fluids.
- FLUID TEMPERATURE Normal inlet fluid temperature should not exceed 140° F. (60° C.). Always select a fluid for optimum viscosity at operating temperature. Consult factory for applications assistance when inlet fluid temperatures over 140° F. (60° C.) are expected.
- FILTRATION Fluid cleanliness per ISO/DIS 4406 should be 18/15 or better for pressures of 2000 psi (140 bar) or less. For continuous operating pressures of 2000 to 3000 psi (140 to 210 bar), fluid cleanliness should be 17/13 or better.



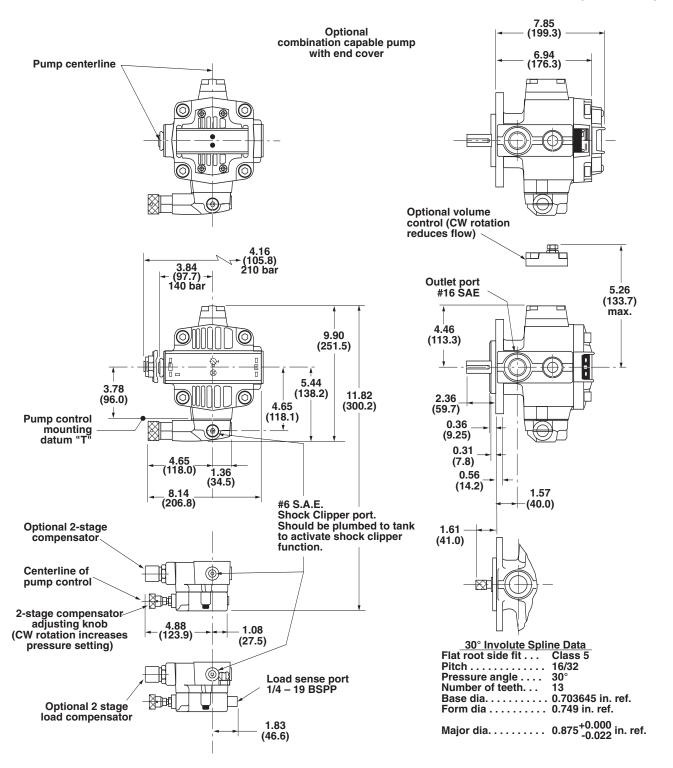

### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

### **OUTPUT FLOW & POWER @ 1800 rpm**




Data plotted: With oil at  $120^{\circ}$  F.  $(49^{\circ}$  C.). Viscosity @  $120^{\circ}$  F.  $(49^{\circ}$  C.) = 140 SUS.

### **EFFICIENCY @ 1800 rpm**

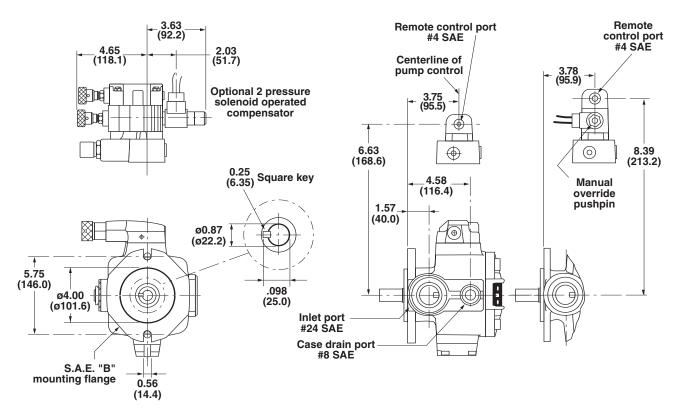



### SOUND PRESSURE @ 1800 rpm



### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

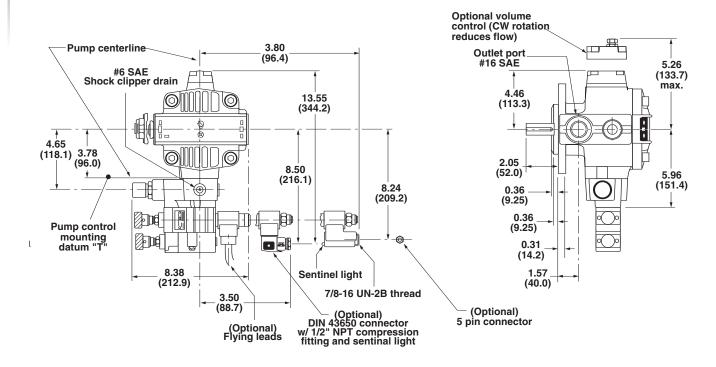
### S.A.E. 'B' Flange, RH Rotation

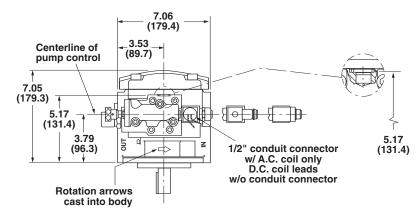





### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

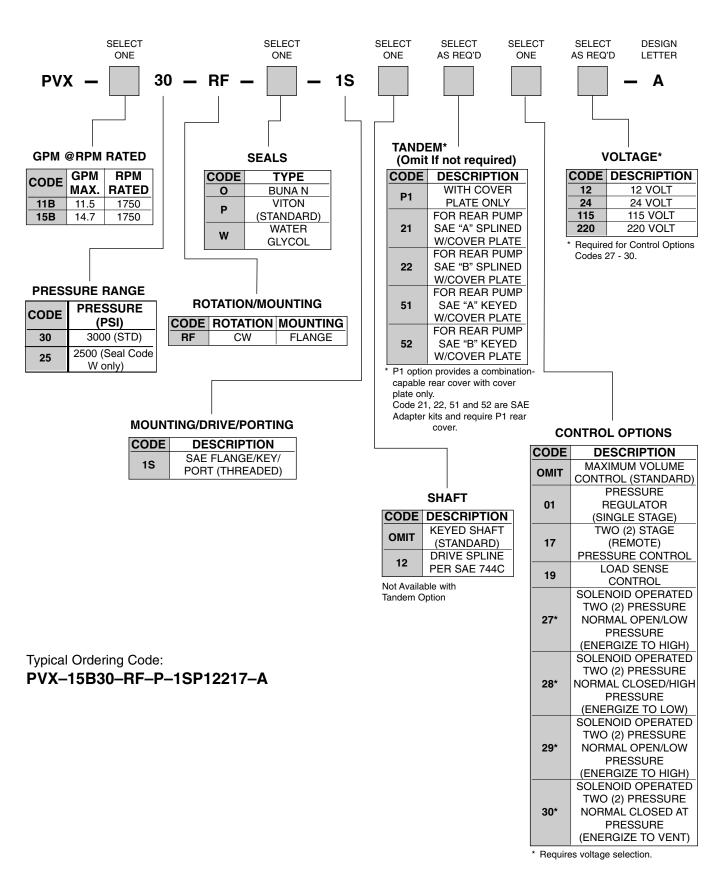
### S.A.E. 'B' Flange, RH Rotation






VARIABLE DISPLACEMENT, PRESSURE COMPENSATED


### S.A.E. 'B' Flange, RH Rotation







### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED





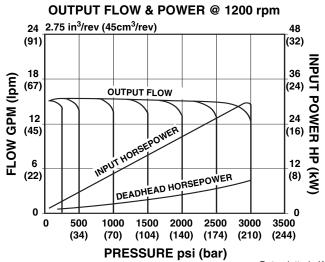
### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

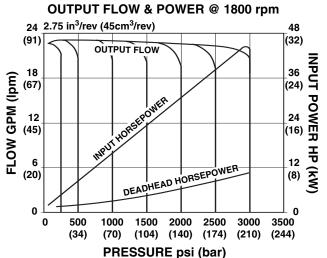


NOTE: See pages 22 and 23 for PVX-20 dimensions.

#### PERFORMANCE SPECIFICATIONS

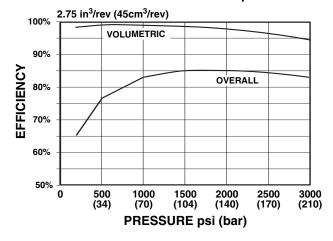
| Displacement (Nominal)                       |                                                  | 2.75 in <sup>3</sup> /rev. (45 cm <sup>3</sup> /rev.)                |
|----------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|
| Displacement (Actual)                        |                                                  | 2.88 in <sup>3</sup> /rev. (47.3 cm <sup>3</sup> /rev.)              |
| Flow at 1750 rpm*                            |                                                  | 20.83 gpm (72.8 l/min.)                                              |
| Maximum continuous pro                       | essure                                           | 3000 psi (210 bar)                                                   |
| Pressure compensating range                  | Two stage                                        | 350-3000 psi (24-210 bar)<br>Minimum 300 psi (21 bar)                |
| Maximum transient spike                      | pressure                                         | 4000 psi (280 bar)                                                   |
| Maximum case pressure                        |                                                  | 10 psi (0.7 bar)                                                     |
| Speed range                                  |                                                  | 1150 - 1800 rpm                                                      |
| Direction of rotation (view                  | ved shaft end)                                   | Right hand (clockwise)                                               |
| while compensating 2000                      | 0 psi (70 bar)<br>psi (140 bar)<br>psi (210 bar) | 1.5 gpm (5.7 l/min.)<br>1.9 gpm (7.2 l/min.)<br>2.5 gpm (9.5 l/min.) |
| Maximum inlet vacuum at sea level            |                                                  | 6 inches Hg (152 mm Hg)                                              |
| Mounting - SAE 2 bolt flange<br>(ISO 3019/1) |                                                  | S.A.E 'C' - 2 bolt flange                                            |
| Mounting position                            |                                                  | Unrestricted                                                         |
|                                              | Inlet                                            | 2" S.A.E.                                                            |
| Port sizes                                   | Outlet                                           | 1-1/4" S.A.E.                                                        |
| FUIT SIZES                                   | Case drain                                       | #8 S.A.E.                                                            |
| Remote cor                                   | ntrol (optional)                                 | #4 S.A.E.                                                            |
|                                              | Minimum                                          | 150 SUS (32 cSt)                                                     |
| Fluid viscosity at                           | Maximum                                          | 1000 SUS (216 cSt)                                                   |
| operating temperature                        | Optimum                                          | 200-300 SUS (43-65 cSt)                                              |
|                                              | imum start-up                                    | 4000 SUS (864 cSt)                                                   |
| Seals                                        |                                                  | Standard fluorocarbon                                                |


| Response time<br>(Circuit dependent) | Full flow to minimum flow    | 20-40 ms                              |
|--------------------------------------|------------------------------|---------------------------------------|
| Response time<br>(Circuit dependent) | Minimum flow<br>to full flow | 100-250 ms -<br>two stage compensator |
| Weight                               | Single stage<br>Two stage    | 120 lbs. (55 kg)<br>128 lbs. (58 kg)  |

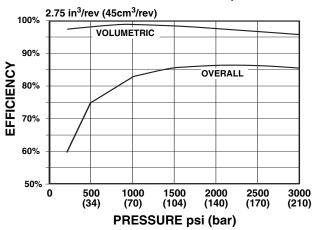

<sup>\*</sup> Flows are actual. Volumetric efficiencies shown in technical data are taken into account.

- **DRIVE** Pump to be connected to prime mover by means of a flexible coupling that is aligned to a maximum of .006" (.152 mm) total indicator reading. No overhung or side loads permitted. Alignments greater than .006" (.152 mm) indicator reading could cause increased noise and vibration as well as premature shaft seal wear resulting in leakage.
- FLUID RECOMMENDATIONS A premium quality hydraulic oil with anti-wear additives is recommended, but not required. Consult factory for use with water base fire resistant fluids.
- FLUID TEMPERATURE Normal inlet fluid temperature should not exceed 140° F. (60° C.). Always select a fluid for optimum viscosity at operating temperature. Consult factory for applications assistance when inlet fluid temperatures over 140° F. (60° C.) are expected.
- FILTRATION Fluid cleanliness per ISO/DIS 4406 should be 18/15 or better for pressures of 2000 psi (140 bar) or less. For continuous operating pressures of 2000 to 3000 psi (140 to 210 bar), fluid cleanliness should be 17/13 or better.

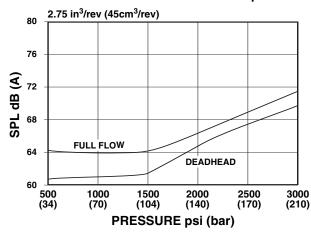



### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

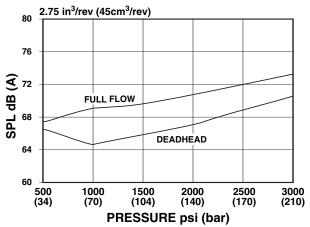





Data plotted: With oil at  $120^{\circ}$  F.  $(49^{\circ}$  C.). Viscosity @  $120^{\circ}$  F.  $(49^{\circ}$  C.) = 140 SUS.


#### **EFFICIENCY @ 1200 rpm**




### EFFICIENCY @ 1800 rpm



#### SOUND PRESSURE @ 1200 rpm



### SOUND PRESSURE @ 1800 rpm





### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

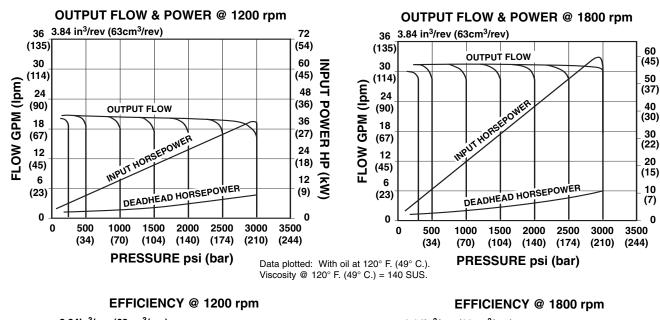


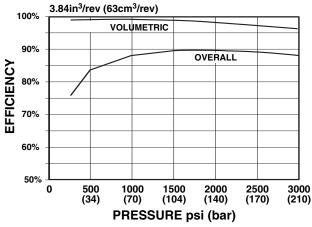
NOTE: See pages 22 and 23 for PVX-29 dimensions.

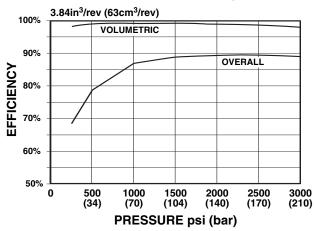
### PERFORMANCE SPECIFICATIONS

| Displacement (Nominal)                       | 3.84 in <sup>3</sup> /rev. (63 cm <sup>3</sup> /rev.)   |
|----------------------------------------------|---------------------------------------------------------|
| , ,                                          |                                                         |
| Displacement (Actual)                        | 3.93 in <sup>3</sup> /rev. (64.4 cm <sup>3</sup> /rev.) |
| Flow at 1750 rpm*                            | 29.10 gpm (110.1 l/min.)                                |
| Maximum continuous pressure                  | 3000 psi (210 bar)                                      |
| Pressure compensating Two stage              | 350-3000 psi (24-210 bar)                               |
| range                                        | Minimum 300 psi (21 bar)                                |
| Maximum transient spike pressure             | 4000 psi (280 bar)                                      |
| Maximum case pressure                        | 10 psi (0.7 bar)                                        |
| Speed range                                  | 1150 - 1800 rpm                                         |
| Direction of rotation (viewed shaft end)     | Right hand (clockwise)                                  |
| Case drain flow 1000 psi (70 bar)            | 1.4 gpm (5.3 l/min.)                                    |
| while compensating 2000 psi (140 bar)        | 1.8 gpm (6.8 l/min.)                                    |
| at 1800 rpm 3000 psi (210 bar)               | 2.4 gpm (9.1 l/min.)                                    |
| Maximum inlet vacuum at sea level            | 6 inches Hg (152 mm Hg)                                 |
| Mounting - SAE 2 bolt flange<br>(ISO 3019/1) | S.A.E 'C' - 2 bolt flange                               |
| Mounting position                            | Unrestricted                                            |
| Inlet                                        | 2" S.A.E.                                               |
| Port sizes Outlet                            | 1-1/4" S.A.E.                                           |
| Case drain                                   | #8 S.A.E.                                               |
| Remote control (optional)                    | #4 S.A.E.                                               |
| Minimum                                      | 150 SUS (32 cSt)                                        |
| Fluid viscosity at Maximum                   | 1000 SUS (216 cSt)                                      |
| operating temperature Optimum                | 200-300 SUS (43-65 cSt)                                 |
| Maximum start-up                             | 4000 SUS (864 cSt)                                      |
| Seals                                        | Standard fluorocarbon                                   |

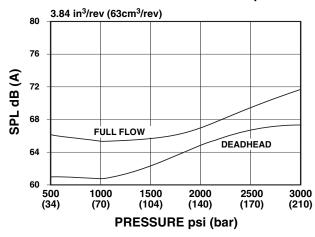
| Response time<br>(Circuit dependent) | Full flow to minimum flow    | 20-40 ms                              |
|--------------------------------------|------------------------------|---------------------------------------|
| Response time (Circuit dependent)    | Minimum flow<br>to full flow | 100-250 ms -<br>two stage compensator |
| Weight                               | Single stage<br>Two stage    | 120 lbs. (55 kg)<br>128 lbs. (58 kg)  |


<sup>\*</sup> Flows are actual. Volumetric efficiencies shown in technical data are taken into account.

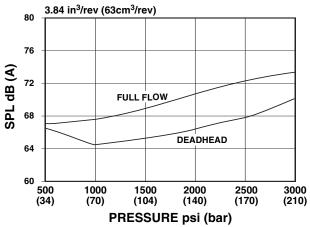

- **DRIVE** Pump to be connected to prime mover by means of a flexible coupling that is aligned to a maximum of .006" (.152 mm) total indicator reading. No overhung or side loads permitted. Alignments greater than .006" (.152 mm) indicator reading could cause increased noise and vibration as well as premature shaft seal wear resulting in leakage.
- FLUID RECOMMENDATIONS A premium quality hydraulic oil with anti-wear additives is recommended, but not required. Consult factory for use with water base fire resistant fluids.
- FLUID TEMPERATURE Normal inlet fluid temperature should not exceed 140° F. (60° C.). Always select a fluid for optimum viscosity at operating temperature. Consult factory for applications assistance when inlet fluid temperatures over 140° F. (60° C.) are expected.
- **FILTRATION** Fluid cleanliness per ISO/DIS 4406 should be 18/15 or better for pressures of 2000 psi (140 bar) or less. For continuous operating pressures of 2000 to 3000 psi (140 to 210 bar), fluid cleanliness should be 17/13 or better.




**INPUT POWER HP (kW)** 


### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED








#### SOUND PRESSURE @ 1200 rpm



### SOUND PRESSURE @ 1800 rpm





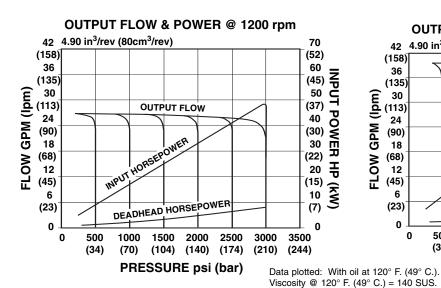
### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

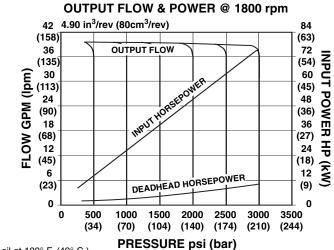


NOTE: See pages 22 and 23 for PVX-36 dimensions.

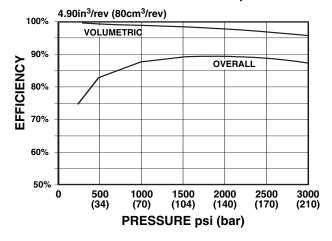
### PERFORMANCE SPECIFICATIONS

| Displacement (Nominal)                       | 4.88 in <sup>3</sup> /rev. (80 cm <sup>3</sup> /rev.)   |
|----------------------------------------------|---------------------------------------------------------|
| Displacement (Actual)                        | 5.02 in <sup>3</sup> /rev. (82.3 cm <sup>3</sup> /rev.) |
| Flow at 1750 rpm*                            | 36.97 gpm (139.9 l/min.)                                |
| Maximum continuous pressure                  | 3000 psi (210 bar)                                      |
| Pressure compensating Two stage range        | 350-3000 psi (24-210 bar)<br>Minimum 300 psi (21 bar)   |
| Maximum transient spike pressure             | 4000 psi (280 bar)                                      |
| Maximum case pressure                        | 10 psi (0.7 bar)                                        |
| Speed range                                  | 1150 - 1800 rpm                                         |
| Direction of rotation (viewed shaft end)     | Right hand (clockwise)                                  |
| Case drain flow 1000 psi (70 bar)            | 1.4 gpm (5.3 l/min.)                                    |
| while compensating 2000 psi (140 bar)        | 1.8 gpm (6.8 l/min.)                                    |
| at 1800 rpm 3000 psi (210 bar)               | 2.3 gpm (8.7 l/min.)                                    |
| Maximum inlet vacuum at sea level            | 6 inches Hg (152 mm Hg)                                 |
| Mounting - SAE 2 bolt flange<br>(ISO 3019/1) | S.A.E 'C' - 2 bolt flange                               |
| Mounting position                            | Unrestricted                                            |
| Inlet                                        | 2" S.A.E.                                               |
| Port sizes Outlet                            | 1-1/4" S.A.E.                                           |
| Case drain                                   | #8 S.A.E.                                               |
| Remote control (optional)                    | #4 S.A.E.                                               |
| Minimum                                      | 150 SUS (32 cSt)                                        |
| Fluid viscosity at Maximum                   | 1000 SUS (216 cSt)                                      |
| operating temperature Optimum                | 200-300 SUS (43-65 cSt)                                 |
| Maximum start-up                             | 4000 SUS (864 cSt)                                      |
| Seals                                        | Standard fluorocarbon                                   |

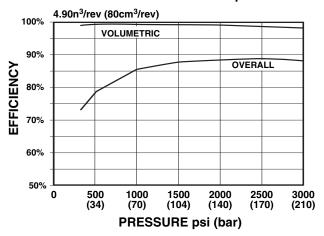

| Response time (Circuit dependent) | Full flow to minimum flow    | 20-40 ms                              |
|-----------------------------------|------------------------------|---------------------------------------|
| Response time (Circuit dependent) | Minimum flow<br>to full flow | 100-250 ms -<br>two stage compensator |
| Weight                            | Single stage<br>Two stage    | 120 lbs. (55 kg)<br>128 lbs. (58 kg)  |


Flows are actual. Volumetric efficiencies shown in technical data are taken into account.

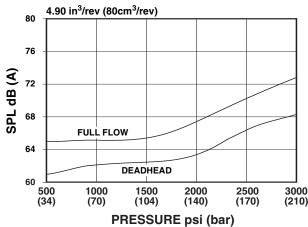
- **DRIVE** Pump to be connected to prime mover by means of a flexible coupling that is aligned to a maximum of .006" (.152 mm) total indicator reading. No overhung or side loads permitted. Alignments greater than .006" (.152 mm) indicator reading could cause increased noise and vibration as well as premature shaft seal wear resulting in leakage.
- FLUID RECOMMENDATIONS A premium quality hydraulic oil with anti-wear additives is recommended, but not required. Consult factory for use with water base fire resistant fluids.
- FLUID TEMPERATURE Normal inlet fluid temperature should not exceed 140° F. (60° C.). Always select a fluid for optimum viscosity at operating temperature. Consult factory for applications assistance when inlet fluid temperatures over 140° F. (60° C.) are expected.
- FILTRATION Fluid cleanliness per ISO/DIS 4406 should be 18/15 or better for pressures of 2000 psi (140 bar) or less. For continuous operating pressures of 2000 to 3000 psi (140 to 210 bar), fluid cleanliness should be 17/13 or better.



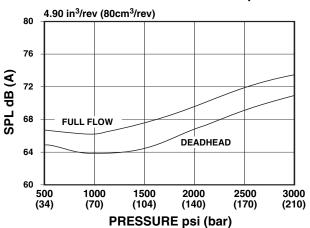

### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED







### EFFICIENCY @ 1200 rpm

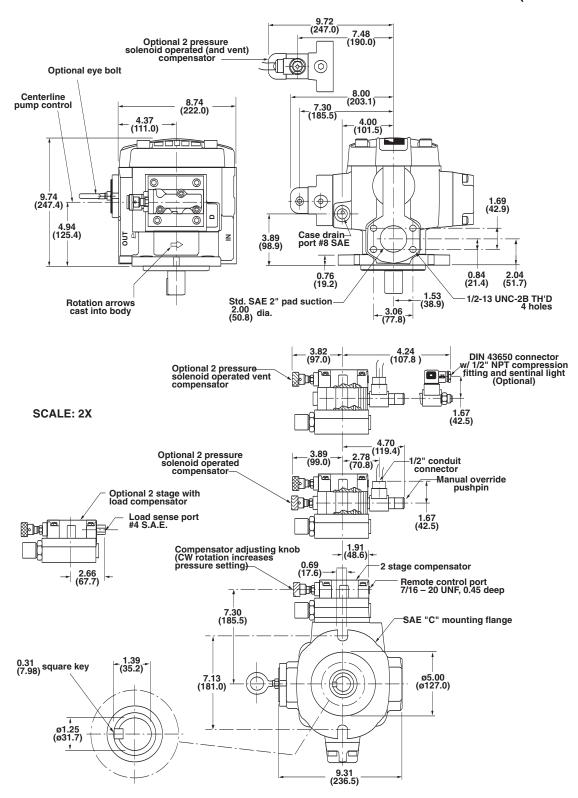



#### EFFICIENCY @ 1800 rpm



### SOUND PRESSURE @ 1200 rpm



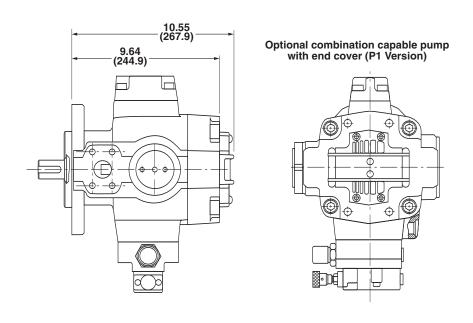

### SOUND PRESSURE @ 1800 rpm

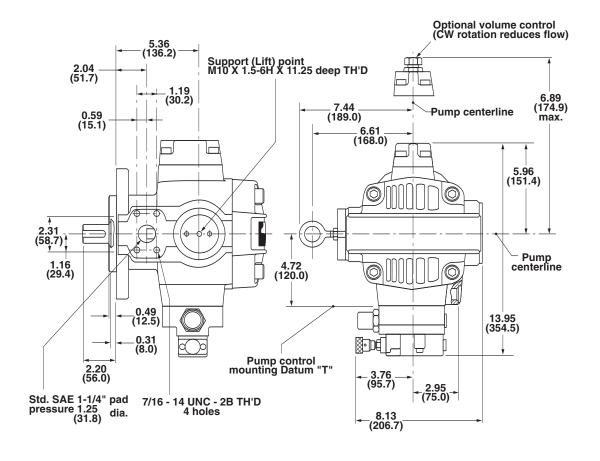


### PVX-20/29/36 VANE PUMPS

VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

### S.A.E. 'C' Flange, RH Rotation

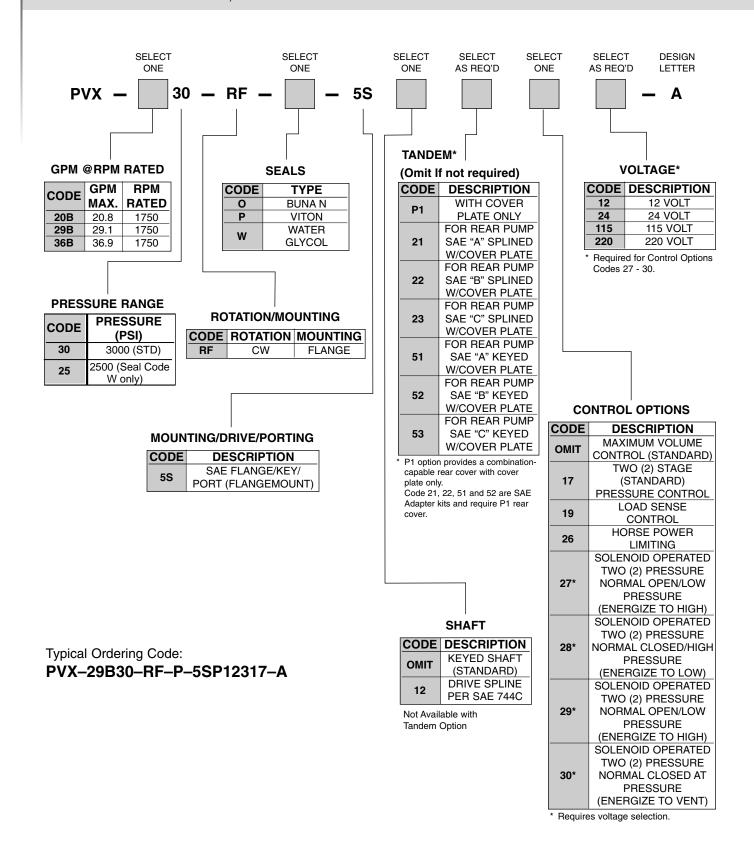




### **PVX-20/29/36 VANE PUMPS**



### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

### S.A.E. 'C' Flange, RH Rotation








### PVX-20/29/36 VANE PUMPS

### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED



CONTINENTAL HYDRAULICS VANE PUMPS

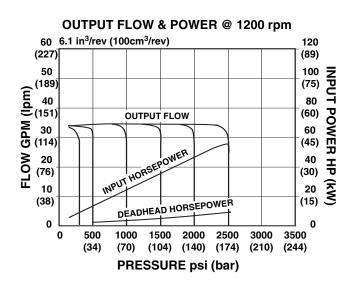


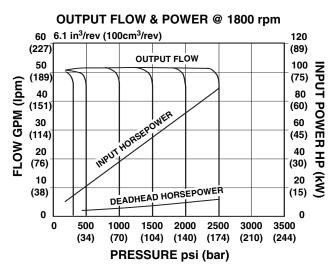
### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED



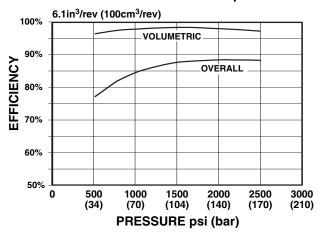
NOTE: See pages 31 and 32 for PVX-46 dimensions.

### PERFORMANCE SPECIFICATIONS

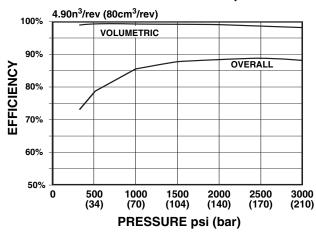

| Displacement (Nominal)                       |               | 6.1 in <sup>3</sup> /rev. (100 cm <sup>3</sup> /rev.) |
|----------------------------------------------|---------------|-------------------------------------------------------|
| Displacement (Actual)                        |               | 6.0 in <sup>3</sup> /rev. (99 cm <sup>3</sup> /rev.)  |
|                                              |               | 45.4 gpm (171.8 l/min.)                               |
| Flow at 1750 rpm*                            |               | , , , , , , , , , , , , , , , , , , ,                 |
| Maximum pressure                             |               | 2500 psi (170 bar)                                    |
| Maximum pressure - high of applications      | cycle         | 2500 psi (170 bar)                                    |
| Pressure compensating range                  | Two stage     | 350-2500 psi (24-170 bar)                             |
| Maximum transient spike pressure             |               | 4000 psi (280 bar)                                    |
| Maximum case pressure                        |               | 10 psi (0.7 bar)                                      |
| Speed range                                  |               | 1150 - 1800 rpm                                       |
| Direction of rotation (viewed shaft end)     |               | Right hand (clockwise)                                |
| Case drain flow 1000                         | psi (70 bar)  | 1.5 gpm (5.7 l/min.)                                  |
| while compensating 2000 p                    | si (140 bar)  | 2.0 gpm (7.6 l/min.)                                  |
| at 1800 rpm 3000 p                           | si (210 bar)  | 2.5 gpm (9.5 l/min.)                                  |
| Maximum inlet vacuum at sea level            |               | 6 inches Hg (152 mm Hg)                               |
| Mounting - SAE 2 bolt flange<br>(ISO 3019/1) |               | S.A.E 'D' - 2 bolt flange                             |
| Mounting position                            |               | Unrestricted                                          |
|                                              | Inlet         | 2-1/2" S.A.E.                                         |
| Port sizes                                   | Outlet        | 1-1/2" S.A.E.                                         |
| FUIT SIZES                                   | Case drain    | #8 S.A.E.                                             |
| Remote contro                                | ol (optional) | #4 S.A.E.                                             |
|                                              | Minimum       | 150 SUS (32 cSt)                                      |
| Fluid viscosity at                           | Maximum       | 1000 SUS (216 cSt)                                    |
| operating temperature                        | Optimum       | 200-300 SUS (43-65 cSt)                               |
| Maxim                                        | um start-up   | 4000 SUS (864 cSt)                                    |
| Seals                                        |               | Standard fluorocarbon                                 |
|                                              |               |                                                       |


| Response time (Circuit dependent)    | Full flow to minimum flow    | 20-50 ms                                 |
|--------------------------------------|------------------------------|------------------------------------------|
| Response time<br>(Circuit dependent) | Minimum flow<br>to full flow | 250 - 500 ms -<br>two stage compensator  |
| Weight                               | Single stage Two stage       | 240 lbs. (109 kg)<br>248 lbs. (112.7 kg) |

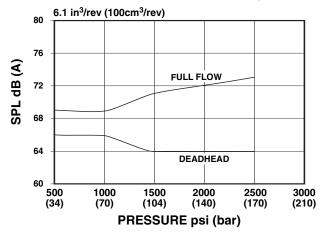
Flows are actual. Volumetric efficiencies shown in technical data are taken into account.


- **DRIVE** Pump to be connected to prime mover by means of a flexible coupling that is aligned to a maximum of .006" (.152 mm) total indicator reading. No overhung or side loads permitted. Alignments greater than .006" (.152 mm) indicator reading could cause increased noise and vibration as well as premature shaft seal wear resulting in leakage.
- FLUID RECOMMENDATIONS A premium quality hydraulic oil with anti-wear additives is required.\* Consult factory for use with water base fire resistant fluids.
- \* Such as Mobil DTE-26, or similar, for pressures over 2000 psi (140 bar).
- FLUID TEMPERATURE Normal inlet fluid temperature should not exceed 140° F. (60° C.). Always select a fluid for optimum viscosity at operating temperature. Consult factory for applications assistance when inlet fluid temperatures over 140° F. (60° C.) are expected.
- FILTRATION Fluid cleanliness per ISO/DIS 4406 should be 18/15 or better for pressures of 2000 psi (140 bar) or less. For continuous operating pressures of 2000 to 3000 psi (140 to 210 bar), fluid cleanliness should be 17/13 or better.

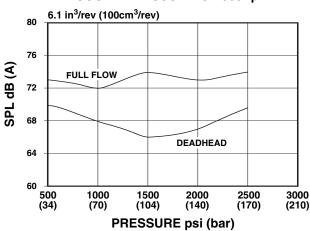
### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED







#### **EFFICIENCY @ 1200 rpm**




#### EFFICIENCY @ 1800 rpm



#### SOUND PRESSURE @ 1200 rpm



#### **SOUND PRESSURE @ 1800 rpm**



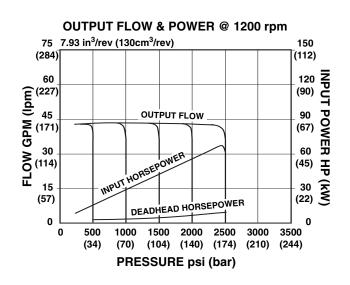


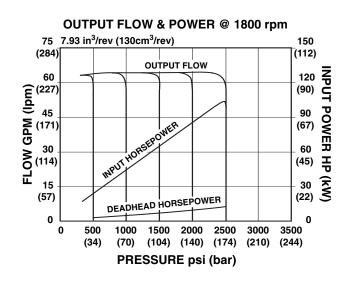
### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED



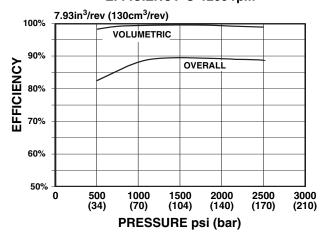
NOTE: See pages 31 and 32 for PVX-60 dimensions.

### PERFORMANCE SPECIFICATIONS

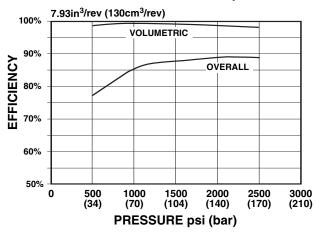

| 7.9 in <sup>3</sup> /rev. (130 cm <sup>3</sup> /rev.) |
|-------------------------------------------------------|
| 8.0 in <sup>3</sup> /rev. (131 cm <sup>3</sup> /rev.) |
| 59.85 gpm (226.5 l/min.)                              |
| 2500 psi (170 bar)                                    |
| 2500 psi (170 bar)                                    |
| e 350-2500 psi (24-170 bar)                           |
| 4000 psi (280 bar)                                    |
| 10 psi (0.7 bar)                                      |
| 1150 - 1800 rpm                                       |
| d) Right hand (clockwise)                             |
| r) 1.6 gpm (6.0 l/min.)                               |
| r) 2.2 gpm (8.3 l/min.)                               |
| r) 3.0 gpm (11.3 l/min.)                              |
| 6 inches Hg (152 mm Hg)                               |
| S.A.E 'D' - 2 bolt flange                             |
| Unrestricted                                          |
| et 2-1/2" S.A.E.                                      |
| et 1-1/2" S.A.E.                                      |
| n #8 S.A.E.                                           |
| I) #4 S.A.E.                                          |
| n 150 SUS (32 cSt)                                    |
| n 1000 SUS (216 cSt)                                  |
| m 200-300 SUS (43-65 cSt)                             |
| p 4000 SUS (864 cSt)                                  |
| Standard fluorocarbon                                 |
|                                                       |


| Full flow to minimum flow | 20-50 ms                                 |
|---------------------------|------------------------------------------|
| Minimum flow to full flow | 250 - 500 ms -<br>two stage compensator  |
| Single stage              | 240 lbs. (109 kg)<br>248 lbs. (112.7 kg) |
|                           | minimum flow Minimum flow to full flow   |

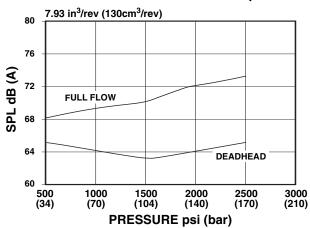
Flows are actual. Volumetric efficiencies shown in technical data are taken into account.


- **DRIVE** Pump to be connected to prime mover by means of a flexible coupling that is aligned to a maximum of .006" (.152 mm) total indicator reading. No overhung or side loads permitted. Alignments greater than .006" (.152 mm) indicator reading could cause increased noise and vibration as well as premature shaft seal wear resulting in leakage.
- FLUID RECOMMENDATIONS A premium quality hydraulic oil with anti-wear additives is required.\* Consult factory for use with water base fire resistant fluids.
- \* Such as Mobil DTE-26, or similar, for pressures over 2000 psi (140 bar).
- FLUID TEMPERATURE Normal inlet fluid temperature should not exceed 140° F. (60° C.). Always select a fluid for optimum viscosity at operating temperature. Consult factory for applications assistance when inlet fluid temperatures over 140° F. (60° C.) are expected.
- FILTRATION Fluid cleanliness per ISO/DIS 4406 should be 18/15 or better for pressures of 2000 psi (140 bar) or less. For continuous operating pressures of 2000 to 3000 psi (140 to 210 bar), fluid cleanliness should be 17/13 or better.

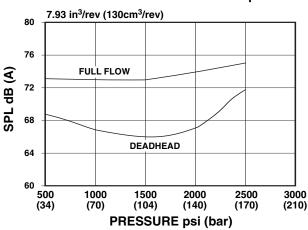
### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED







### **EFFICIENCY @ 1200 rpm**




#### EFFICIENCY @ 1800 rpm



### SOUND PRESSURE @ 1200 rpm



#### SOUND PRESSURE @ 1800 rpm



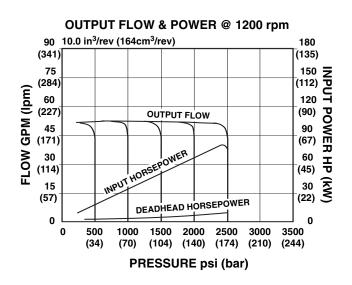


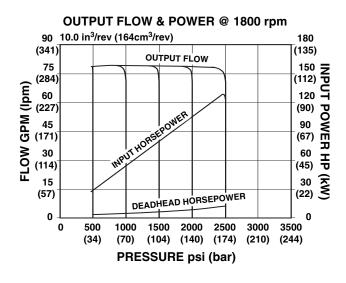
### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED



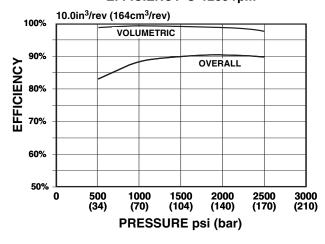
NOTE: See pages 31 and 32 for PVX-75 dimensions.

### PERFORMANCE SPECIFICATIONS

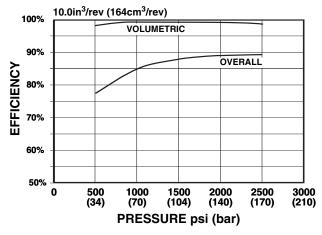

| Displacement (Nominal)                       |                                                  | 10.0 in <sup>3</sup> /rev. (164 cm <sup>3</sup> /rev.)                |
|----------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|
| Displacement (Actual)                        |                                                  | 10.0 in <sup>3</sup> /rev. (164 cm <sup>3</sup> /rev.)                |
| Flow at 1750 rpm*                            |                                                  | 75.76 gpm (286.7 l/min.)                                              |
| Maximum pressure                             |                                                  | 2500 psi (170 bar)                                                    |
| Maximum pressure - high cycle applications   |                                                  | 2500 psi (170 bar)                                                    |
| Pressure compensating range                  | Two stage                                        | 350-2500 psi (24-170 bar)                                             |
| Maximum transient spike                      | pressure                                         | 4000 psi (280 bar)                                                    |
| Maximum case pressure                        |                                                  | 10 psi (0.7 bar)                                                      |
| Speed range                                  |                                                  | 1150 - 1800 rpm                                                       |
| Direction of rotation (viewed shaft end)     |                                                  | Right hand (clockwise)                                                |
| while compensating 2000                      | 0 psi (70 bar)<br>psi (140 bar)<br>psi (210 bar) | 1.7 gpm (6.4 l/min.)<br>2.3 gpm (8.7 l/min.)<br>3.1 gpm (11.7 l/min.) |
| Maximum inlet vacuum at                      | . , ,                                            | 6 inches Hg (152 mm Hg)                                               |
| Mounting - SAE 2 bolt flange<br>(ISO 3019/1) |                                                  | S.A.E 'D' - 2 bolt flange                                             |
| Mounting position                            |                                                  | Unrestricted                                                          |
|                                              | Inlet                                            | 2-1/2" S.A.E.                                                         |
| Port sizes                                   | Outlet                                           | 1-1/2" S.A.E.                                                         |
|                                              | Case drain                                       | #8 S.A.E.                                                             |
| Remote con                                   | trol (optional)                                  | #4 S.A.E.                                                             |
|                                              | Minimum                                          | 150 SUS (32 cSt)                                                      |
| Fluid viscosity at                           | Maximum                                          | 1000 SUS (216 cSt)                                                    |
| operating temperature                        | Optimum                                          | 200-300 SUS (43-65 cSt)                                               |
| Maxi                                         | mum start-up                                     | 4000 SUS (864 cSt)                                                    |
| Seals                                        |                                                  | Standard fluorocarbon                                                 |


| Response time (Circuit dependent) | Full flow to minimum flow    | 20-50 ms                                 |
|-----------------------------------|------------------------------|------------------------------------------|
| Response time (Circuit dependent) | Minimum flow<br>to full flow | 250 - 500 ms -<br>two stage compensator  |
| Weight                            | Single stage<br>Two stage    | 240 lbs. (109 kg)<br>248 lbs. (112.7 kg) |

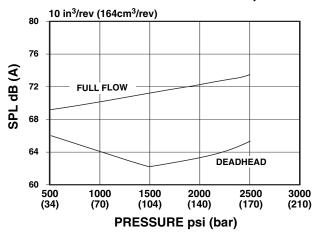
Flows are actual. Volumetric efficiencies shown in technical data are taken into account.


- **DRIVE** Pump to be connected to prime mover by means of a flexible coupling that is aligned to a maximum of .006" (.152 mm) total indicator reading. No overhung or side loads permitted. Alignments greater than .006" (.152 mm) indicator reading could cause increased noise and vibration as well as premature shaft seal wear resulting in leakage.
- FLUID RECOMMENDATIONS A premium quality hydraulic oil with anti-wear additives is required.\* Consult factory for use with water base fire resistant fluids.
- $^{\star}$  Such as Mobil DTE-26, or similar, for pressures over 2000 psi (140 bar).
- FLUID TEMPERATURE Normal inlet fluid temperature should not exceed 140° F. (60° C.). Always select a fluid for optimum viscosity at operating temperature. Consult factory for applications assistance when inlet fluid temperatures over 140° F. (60° C.) are expected.
- FILTRATION Fluid cleanliness per ISO/DIS 4406 should be 18/15 or better for pressures of 2000 psi (140 bar) or less. For continuous operating pressures of 2000 to 3000 psi (140 to 210 bar), fluid cleanliness should be 17/13 or better.

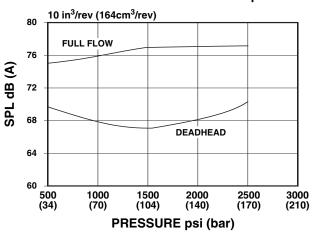
### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED







#### **EFFICIENCY @ 1200 rpm**



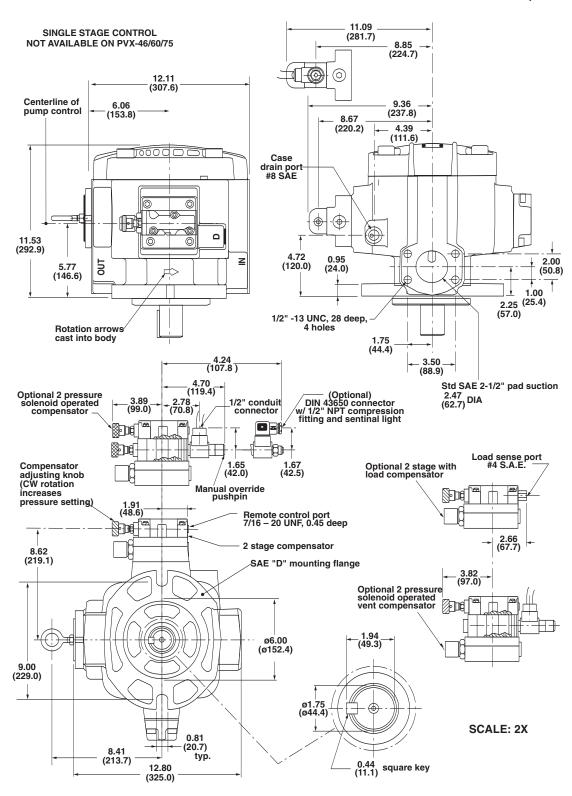

### EFFICIENCY @ 1800 rpm



#### **SOUND PRESSURE @ 1200 rpm**



#### **SOUND PRESSURE @ 1800 rpm**

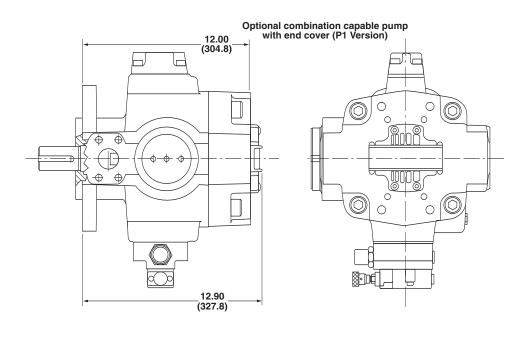


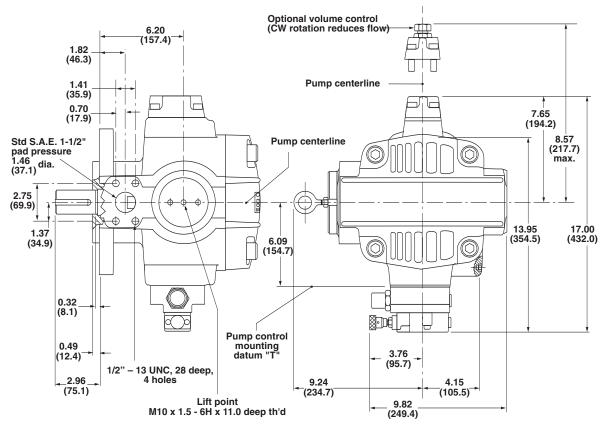

### **PVX-46/60/75 VANE PUMPS**



### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

### S.A.E. 'D' Flange, RH Rotation

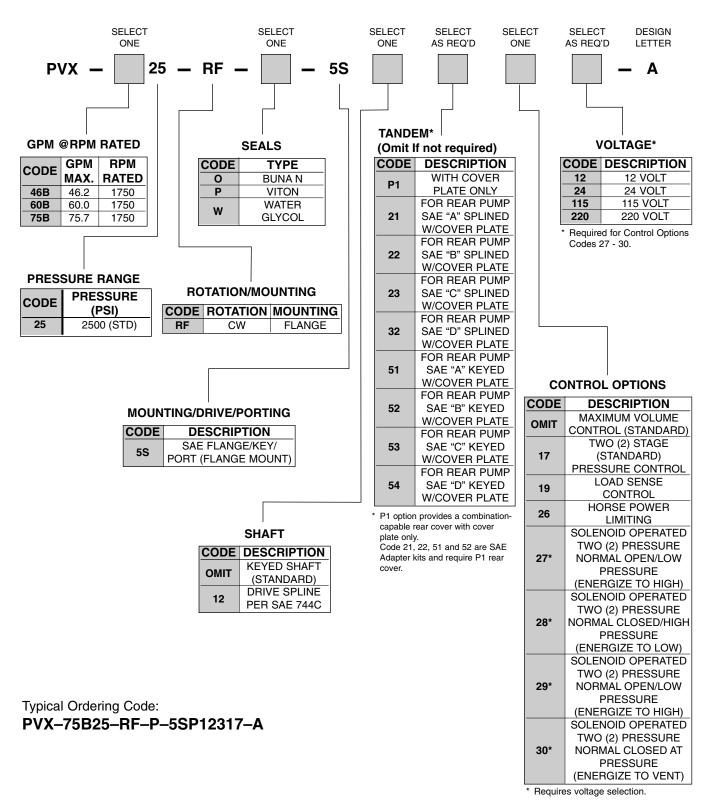



### **PVX-46/60/75 VANE PUMPS**

VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

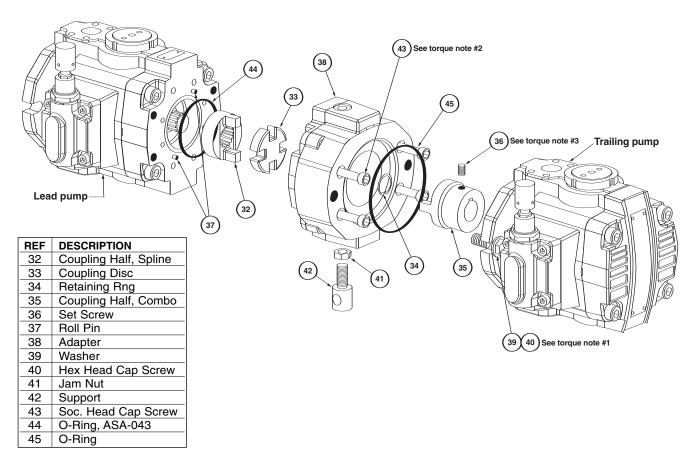
### S.A.E. 'D' Flange, RH Rotation






### PVX-46/60/75 VANE PUMPS




### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED



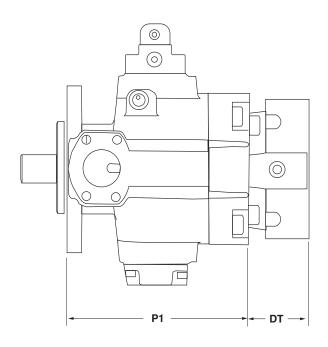


### **PVX SERIES VANE PUMPS**

### ADAPTER KITS FOR PVX COMBINATIONS USING "P1" PUMPS



#### **Adapter KITS**


| Item    | Description                     |
|---------|---------------------------------|
| 264719  | KIT TANDEM PVX 8 CODE 21        |
| 264991  | KIT TANDEM PVX 8 CODE 50        |
| 264240  | KIT TANDEM PVX 8 CODE 51        |
| 266140  | KIT TANDEM PVX 11/15 CODE 21    |
| 264242  | KIT TANDEM PVX 11/15 CODE 22    |
| 264968  | KIT TANDEM PVX 11/15 CODE 50    |
| 264243  | KIT TANDEM PVX 11/15 CODE 51    |
| 264244  | KIT TANDEM PVX 11/15 CODE 52    |
| 264246  | KIT TANDEM PVX 11/15 CODE 56    |
| 264917  | KIT TANDEM PVX 20/29/36 CODE 21 |
| 264247  | KIT TANDEM PVX 20/29/36 CODE 22 |
| 1025772 | KIT TANDEM PVX 20/29/36 CODE 23 |
| 264992  | KIT TANDEM PVX 20/29/36 CODE 50 |
| 264248  | KIT TANDEM PVX 20/29/36 CODE 51 |
| 264249  | KIT TANDEM PVX 20/29/36 CODE 52 |
| 264250  | KIT TANDEM PVX 20/29/36 CODE 53 |
| 264857  | KIT TANDEM PVX 46/60/75 CODE 21 |
| 264254  | KIT TANDEM PVX 46/60/75 CODE 22 |
| 264255  | KIT TANDEM PVX 46/60/75 CODE 23 |
| 264256  | KIT TANDEM PVX 46/60/75 CODE 32 |
| 264993  | KIT TANDEM PVX 46/60/75 CODE 50 |
| 264257  | KIT TANDEM PVX 46/60/75 CODE 51 |
| 264258  | KIT TANDEM PVX 46/60/75 CODE 52 |
| 264259  | KIT TANDEM PVX 46/60/75 CODE 53 |
| 264260  | KIT TANDEM PVX 46/60/75 CODE 54 |

| Torque Note #1                             |              |
|--------------------------------------------|--------------|
| Torque to 780 lb/in                        | PVX-8        |
| (Torque to 88 Nm)                          | 1 7/2 0      |
| Torque to 1050 lb/in                       | PVX-11/15    |
| (Torque to 119 Nm)                         |              |
| Torque to 1800 lb/in                       | PVX-20/29/36 |
| (Torque to 204 Nm)                         |              |
| Torque to 2000 lb/in                       | PVX-46/60/75 |
| (Torque to 225 Nm)                         |              |
|                                            |              |
| Torque Note #2                             |              |
| Torque to 400 lb/in                        | PVX-8        |
| (Torque to 46 Nm)                          |              |
| Torque to 550 lb/in                        | PVX-11/15    |
| (Torque to 62 Nm)                          |              |
| Torque to 850 lb/in                        | PVX-20/29/36 |
| (Torque to 96 Nm)                          |              |
| Torque to 2300 lb/in (Torque to 260 Nm)    | PVX-46/60/75 |
| (Torque to 260 NIII)                       |              |
| Torque Note #2                             |              |
| Torque Note #3                             | T            |
| Torque to 280 lb/in                        | PVX-11/15    |
| (Torque to 31.5 Nm)<br>Torque to 330 lb/in |              |
| (Torque to 37 Nm)                          | PVX-20/29/36 |
| Torque to 800 lb/in                        |              |
| (Torque to 90 Nm)                          | PVX-46/60/75 |
| (Torque to 30 Mill)                        |              |



#### DIMENSIONS FOR PUMP AND ADAPTER

#### FOR DOUBLE PUMP COMBINATION



| POSSIBLE SIZE COMBINATIONS | PUMP 1<br>(P1) Inches | Adapter (DT) Inches |
|----------------------------|-----------------------|---------------------|
|                            | (PI) inches           | (DT) IIICHES        |
| PVX-8 to S.A.E. "A"        | 6.10                  | 1.95                |
| PVX-11/15 to S.A.E. "A"    | 6.94                  | 1.95                |
| PVX-11/15 to S.A.E. "B"    | 6.94                  | 2.55                |
| PVX-20/29/36 to S.A.E. "A" | 9.64                  | 2.60                |
| PVX-20/29/36 to S.A.E. "B" | 9.64                  | 3.59                |
| PVX-20/29/36 to S.A.E. "C" | 9.64                  | 3.80                |
| PVX-45/60/75 to S.A.E. "A" | 12.00                 | 2.61                |
| PVX-45/60/75 to S.A.E. "B" | 12.00                 | 3.19                |
| PVX-45/60/75 to S.A.E. "C" | 12.00                 | 3.80                |
| PVX-45/60/75 to S.A.E. "D" | 12.00                 | 4.83                |

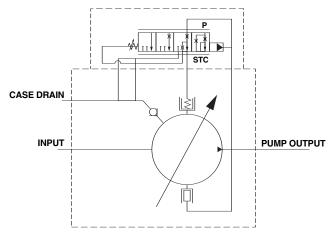
#### THROUGH DRIVE HORSEPOWER

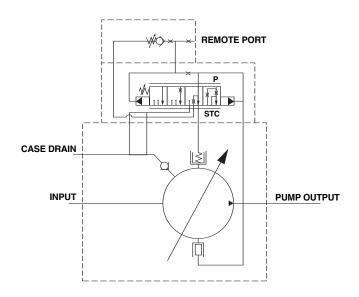
The PVX Series pumps can be coupled with other pumps with standard SAE mounting patterns (PVX pumps can be coupled without losing use of stroke limiter). PVX combination pumps are rated to carry the load of an additional pump(s) equal to the maximum load of the lead PVX pump it can generate (see chart).

| PUMP   | FLOW @<br>1750 RPM<br>(GPM) | MAXIMUM<br>PRESSURE<br>(PSIG) | PUMP #1<br>INPUT<br>HORSEPOWER | MAXIMUM INPUT<br>HORSEPOWER<br>OTHER PUMPS |
|--------|-----------------------------|-------------------------------|--------------------------------|--------------------------------------------|
| PVX-8  | 8.03                        | 3000                          | 17.6                           | 17.6                                       |
| PVX-11 | 12.6                        | 3000                          | 25.3                           | 25.3                                       |
| PVX-15 | 15.4                        | 3000                          | 30.7                           | 30.7                                       |
| PVX-20 | 21.8                        | 3000                          | 43.3                           | 43.3                                       |
| PVX-29 | 29.6                        | 3000                          | 58.5                           | 58.5                                       |
| PVX-36 | 37.2                        | 3000                          | 74.6                           | 74.6                                       |
| PVX-46 | 46.2                        | 3000                          | 88.8                           | 88.8                                       |
| PVX-60 | 60.0                        | 3000                          | 117.6                          | 117.6                                      |
| PVX-75 | 75.8                        | 3000                          | 156.5                          | 156.5                                      |

#### **EXAMPLES:**

PVX-46 @ 3045 psig + PVX-29 @ 3045 psig + PVX-11 @ 3045 psig  $88.8 \ HP \ge 58.5 + 23.3$ 


PVX-8 @ 3045 psig + PVX-8 @ 1500 psig + PVX-8 @ 1500 psig  $17.6 \text{ HP} \ge 8.7 + 8.7$ 


#### **PVX PUMP CONTROLS**

Schematics shown illustrate PVX20 - 75 pump controls with shock clipper integrated and no exterior plumbing required. The case drain shows an integrated check valve not present in PVX-8/11/15 pumps. All controls leave the factory preset at 500 psi (34 bar).

#### SINGLE STAGE COMPENSATOR — CODE 01

The single stage control for normal pressure compensation is a good choice where speed is important and remote capability is not required. This control is available on PVX-8/11/15.

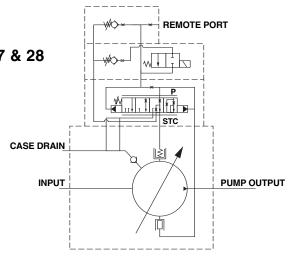


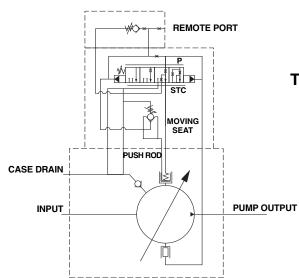



#### TWO STAGE COMPENSATOR — CODE 17

The two (2) stage pressure compensators are the platform for most PVX controls. A remote port is standard and may, or may not be enabled according to the circuit design. This is the smoothest of the standard pressure controls, and is the standard pressure compensator for PVX-20/29/36/46/60/75.

#### **LOAD SENSE COMPENSATOR — CODE 19**


Load sense allows the user to maintain constant flow regardless of changes in load or in pump shaft rotational speed. The load sense compensator accomplishes this by using an external orifice and continually senses a pressure drop of 100 psi (7 bar) across the orifice. The minimum  $\Delta P$  is 100 psi (7 bar), however, the pressure drop can be adjusted to meet circuit requirements. Consult the factory.




**PVX PUMP CONTROLS** 

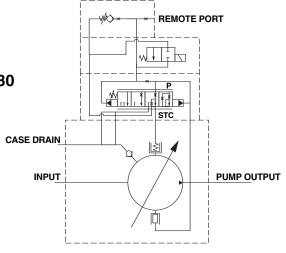
#### TWO PRESSURE COMPENSATOR — CODES 27 & 28

Solenoid two pressure compensators are available in normally open (CODE 27 — normally low, energize to high) and normally closed (CODE 28 — normally high, energize to low) versions. These two pressure controls can greatly reduce horsepower demand and heat generation during periods of idle cycle time, or when the machine operating cycle does not require maximum pressure.



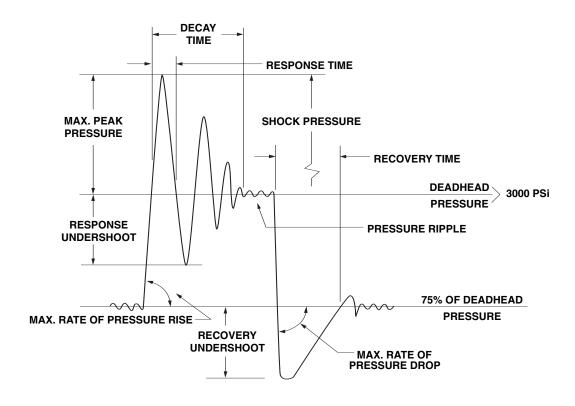


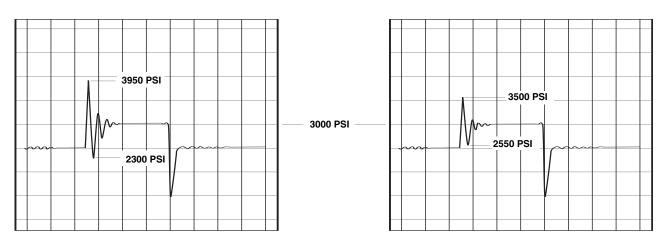
#### **TORQUE LIMITING COMPENSATOR — CODE 26**


Torque limiting for PVX limits the input torque to the pump shaft, in effect limiting the horsepower transmitted to the load. No torque or horsepower sensing is done on the load, only at the pump itself. Pump output flow rate is linear and proportional to movement of the pressure ring. This compensator is adjustable in the field as torque vs. flow requirements demand. Consult the factory for adjustment procedure.

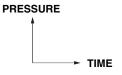
#### **SOLENOID VENT COMPENSATOR — CODE 29 & 30**

Solenoid vented compensators are similar to the two-pressure controls, except that there is no adjustable minimum. By venting the compensator the pump woll go to minimum deadhead.


CODE 29 — Normally vented to minimum, energize to high pressure


CODE 30 — Normally high pressure, energize to vented minimum

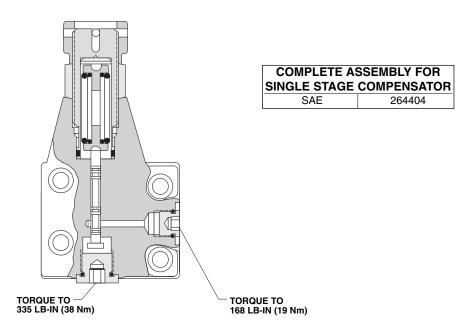




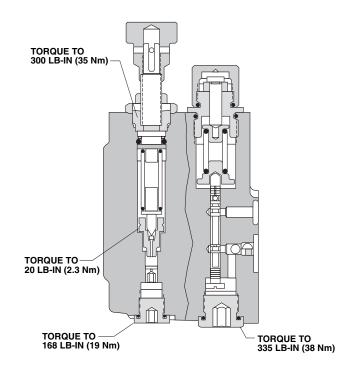

#### REACTION CHARACTERISTICS AND SHOCK CLIPPER FUNCTION






PVX-8 single stage compensator, plot with shock clipper inactive. Response overshoot of 950 psi (66 bar), response undershoot of 700 psi (48 bar) PVX-8 single stage compensator, plot with shock clipper active. Response overshoot of 500 psi (34 bar), response undershoot of 450 psi (31 bar)






REPAIR PARTS - PVX-8/11/15

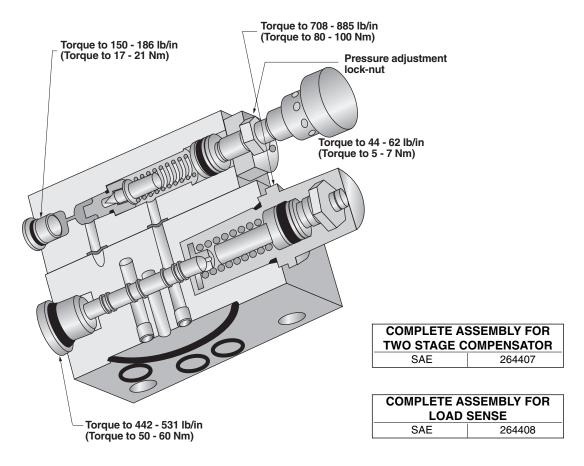
#### SINGLE STAGE COMPENSATOR



#### TWO STAGE COMPENSATOR



**ATTENTION:** These compensators are rated for 3000 psi (210 bar) operation. Install only on pumps rated at 3000 psi (210 bar). Activating shock clipper is highly recommended on all applications greater than 2000 psi (140 bar). Install unrestricted line back to the tank.


| COMPLETE ASSEMBLY FOR TWO STAGE COMPENSATOR |        |  |
|---------------------------------------------|--------|--|
| SAE                                         | 264405 |  |

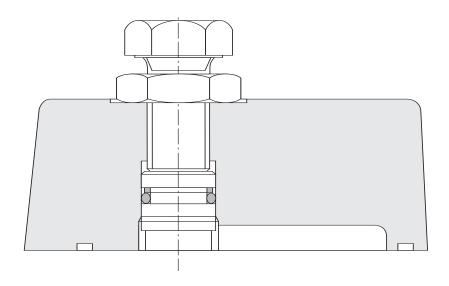
| COMPLETE ASSEMBLY FOR |        |  |
|-----------------------|--------|--|
| LOAD SENSE            |        |  |
| SAE                   | 264406 |  |



REPAIR PARTS - PVX-20/29/36/46/60/75

#### TWO STAGE COMPENSATOR




**ATTENTION:** These compensators are rated for 3000 psi (210 bar) operation. Install only on pumps rated at 3000 psi (210 bar).

NOTE: Quantity of 3, M6 socket head cap screw, not shown. Mounts 2nd stage to 1st stage compensator. Torque to 133 - 177 lb/in (15 - 20 Nm)



#### VARIABLE DISPLACEMENT, PRESSURE COMPENSATED

#### STROKE LIMITER ADJUSTMENT



| STROKE LIMITER ADJUSTMENT |                 |               |              |
|---------------------------|-----------------|---------------|--------------|
| PUMP                      | NOMINAL         | DECREASE IN   | MINIMUM FLOW |
| MODEL                     | STROKE          | FLOW PER TURN | ATTAINABLE   |
| PVX-8                     | 0.075" (1.9 mm) | 53%           | <0%          |
| PVX-11                    | 0.080" (2.0 mm) | 50%           | 0%           |
| PVX-15                    | 0.099" (2.5 mm) | 40%           | 20%          |
| PVX-20                    | 0.077" (1.9 mm) | 80%           | <0%          |
| PVX-30                    | 0.106" (2.7 mm) | 56%           | 8%           |
| PVX-36                    | 0.132" (2.4 mm) | 44%           | 26%          |
| PVX-46                    | 0.117" (3.0 mm) | 50%           | 17%          |
| PVX-60                    | 0.150" (3.8 mm) | 40%           | 34%          |
| PVX-75                    | 0.186" (4.7 mm) | 32%           | 47%          |

During initial start-up, volume should be at least 50% of maximum flow.

Only make adjustments to the volume control with the pump running at full flow and low pressure while observing output flow.



# PVX-8/11/15 VANE PUMPS

#### REPAIR PARTS KITS

#### **REPAIR KITS**

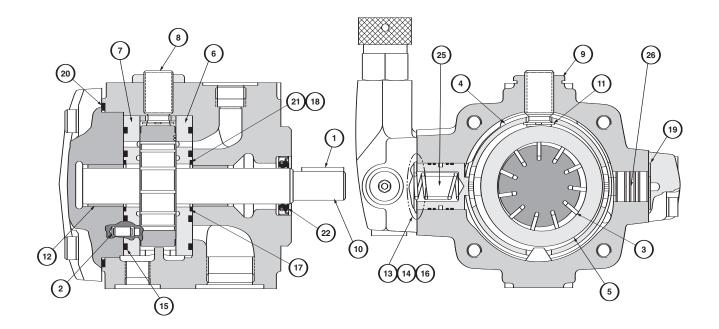
| MODEL     | SAE    | SAE - "P1" |
|-----------|--------|------------|
| PVX-8     | 264288 | 264289     |
| PVX-11/15 | 264292 | 264293     |

#### Repair kits consists of:

| REF | DESCRIPTION            | QTY |
|-----|------------------------|-----|
| 1   | Key                    | 1   |
| 2   | Roll Pin               | 4   |
| 3   | Vane Kit               | 1   |
| 4   | Spacer Ring            | 1   |
| 5   | Pressure Ring          | 1   |
| 6   | Port Plate, Body       | 1   |
| 7   | Port Plate, Cover      | 1   |
| 8   | Thrust Screw           | 1   |
| 9   | Lock Nut               | 1   |
| 10  | Shaft                  | 1   |
| 11  | Retaining Ring (PVX-8) | 1   |
| 12  | Bearing                | 2   |

#### **SEAL KITS**

| MODEL     | SAE    |
|-----------|--------|
| PVX-8     | 264275 |
| PVX-11/15 | 264276 |

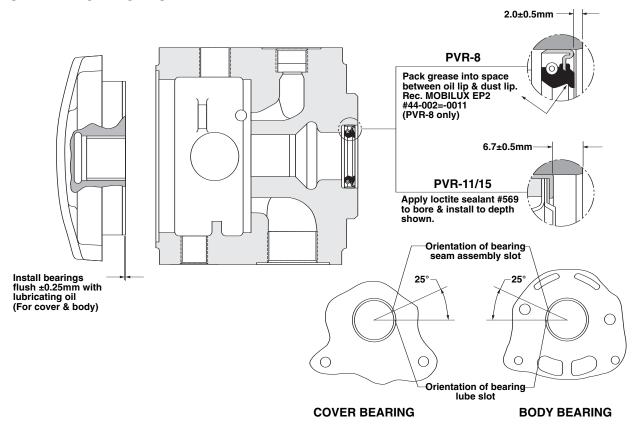

#### **VANE KITS**

| MODEL     | SAE    |
|-----------|--------|
| PVX-8     | 264270 |
| PVX-11/15 | 264271 |

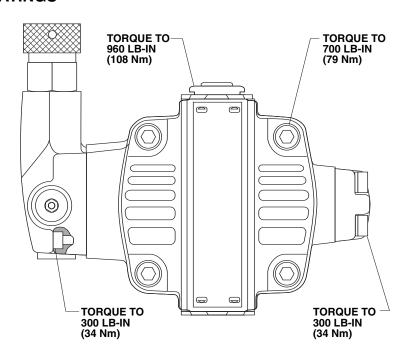
#### Seal repair kits consists of:

|         | <b>.</b>                                  |     |
|---------|-------------------------------------------|-----|
| REF     | DESC. PVX-8 (PVX-11/15)                   | QTY |
| 13      | O-Ring ASA-111 (ASA-111)                  | 1   |
| 14      | O-Ring ASA-110 (ASA-110)                  | 1   |
| 15      | O-Ring ASA-127 (ASA-136)                  | 2   |
| 16      | O-Ring ASA-128 (ASA-128)                  | 1   |
| 17      | O-Ring ASA-026 (ASA-028)                  | 2   |
| 18      | O-Ring ASA-151 (ASA-152)                  | 2   |
| 19      | O-Ring ASA-031 (ASA-031)                  | 1   |
| 20      | O-Ring ASA-156 (ASA-160)                  | 1   |
| 21      | Back-Up Ring                              | 2   |
| 22      | Shaft Seal                                | 1   |
| 23      | O-Ring ASA-011                            | 1   |
| 24      | Back-Up Ring                              | 1   |
| 25      | Control Piston                            | 1   |
| 26      | Bias Piston                               | 1   |
| NOTE: A | II O Diana harra di manatan nationa at 75 |     |

NOTE: All O-Rings have durometer rating of 75.




# PVX-8/11/15 VANE PUMPS




REPAIR PARTS - BEARING INSTALLATION; TORQUE RATINGS

#### **INSTALLATION NOTES**



#### **BOLT TORQUE RATINGS**





# PVX-20/29/36/46/60/75 VANE PUMPS

#### REPAIR PARTS KITS

#### **REPAIR KITS**

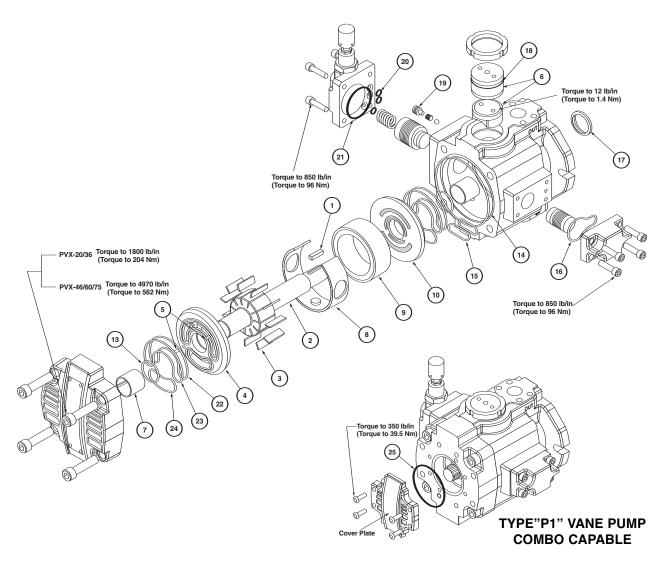
| MODEL  | SAE    | SAE - "P1" |
|--------|--------|------------|
| PVX-20 | 264296 | 264297     |
| PVX-29 | 264296 | 264297     |
| PVX-36 | 264300 | 264301     |
| PVX-46 | 264304 | 264305     |
| PVX-60 | 264304 | 264305     |
| PVX-75 | 264308 | 264309     |

#### Repair kits consists of:

| REF | DESCRIPTION       | QTY |
|-----|-------------------|-----|
| 1   | Key               | 1   |
| 2   | Rotor shaft       | 1   |
| 3   | Vane Kit          | 1   |
| 4   | Port Plate, Cover | 1   |
| 5   | Roll Pin          | 4   |
| 6   | Thrust Block Kit  | 1   |
| 7   | Bearing           | 2   |
| 8   | Spacer Ring       | 1   |
| 9   | Pressure Ring     | 1   |
| 10  | Port Plate, Body  | 1   |

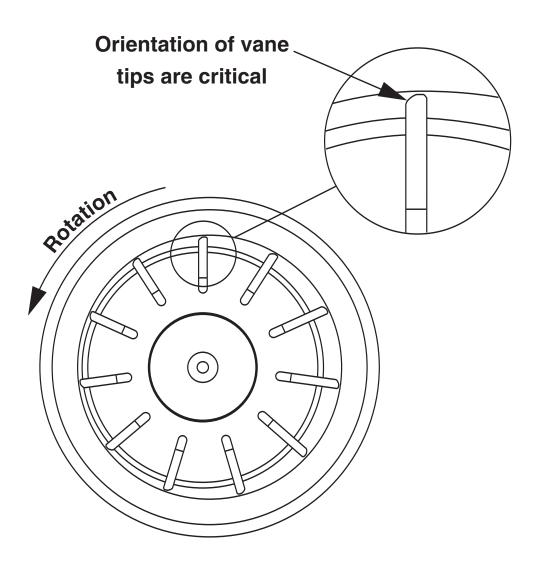
#### **SEAL KITS**

| MODEL        | SAE    |  |
|--------------|--------|--|
| PVX-20/29/36 | 264277 |  |
| PVX-46/60/75 | 264278 |  |


#### Seal repair kits consists of:

| REF | DESC. PVX-20/36 (PVX-46/60/75) | QTY |
|-----|--------------------------------|-----|
| 13  | O-Ring ASA-031 (ASA-035)       | 2   |
| 14  | O-Ring ASA-162 (ASA-265)       | 1   |
| 15  | O-Ring ASA-130 (ASA-229)       | 1   |
| 16  | O-Ring ASA-146 (ASA-146)       | 1   |
| 17  | Shaft Seal                     | 1   |
| 18  | O-Ring ASA-229 (ASA-237)       | 1   |
| 19  | O-Ring ASA-110 (ASA-110)       | 1   |
| 20  | O-Ring ASA-111 (ASA-111)       | 3   |
| 21  | O-Ring ASA-143 (ASA-143)       | 1   |
| 22  | O-Ring ASA-157 (ASA-160)       | 2   |
| 23  | Back-Up Ring                   | 2   |
| 24  | O-Ring ASA-139 (ASA-152)       | 1   |
| 25  | O-Ring ASA-043 (ASA-043)       | 2   |

NOTE: All O-Rings have durometer rating of 75.


#### **VANE KITS**

| MODEL        | SAE    |
|--------------|--------|
| PVX-20/29/36 | 264272 |
| PVX-46/60    | 264273 |
| PVX-75       | 264274 |





VANE TIP ORIENTATION



Looking into pump body from cover side



#### TROUBLE SHOOTING

Some of the most common difficulties that could be experienced in the field are listed here with potential causes

| Some of the mand their reme |                                                                                                      | expe     | rienced in the field are listed here with potential causes                                                                                                                                                                                       |
|-----------------------------|------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TROUBLE                     | POTENTIAL CAUSE                                                                                      |          | REMEDY                                                                                                                                                                                                                                           |
| Excessive pump noise        | 1) Coupling misalignment                                                                             | 1)       | Align the pump and motor shaft to within .006 (.152 mm) of an inch total indicator reading. The tighter the alignment, the quieter the pump will be.                                                                                             |
|                             | The continuous pressure is significantly below 300 psi for 210 bar pumps.                            | 2)       | The pumps have been sound tuned at rated pressure. Consult factory or raise minimum pressure 200 psi for single stage compensators in 2000 psi rated pumps, or 300 psi for 3000 psi rated pumps.                                                 |
|                             | 3) Fluid in the reservoir is low and the pump is sucking air.                                        | 3)       | Fill the reservoir so that the fluid level is well above the end of the suction line during all of the working cycle.                                                                                                                            |
|                             | 4) Restricted inlet.                                                                                 | 4)       | If a suction strainer is used, check it for obstructions or dirt.  It is not recommend the use of strainers as they tend to be a leading cause of cavitation which manifests as excessive noise. Check also for shop rags left in the reservoir. |
|                             | 5) Air leak in the suction line.                                                                     | 5)       | Tighten all fittings. If it still leaks, smear grease over the joints to locate the leak.                                                                                                                                                        |
|                             | <ol><li>Suction line has too many elbows,<br/>or is too long.</li></ol>                              | 6)       | The suction line should be as short and as straight as possible reduce the resistance to flow.                                                                                                                                                   |
|                             | 7) Air in the fluid.                                                                                 | 7)       | The return line should terminate below the fluid level to prevent splashing.                                                                                                                                                                     |
|                             | 8) Suction line is too small.                                                                        | 8)       | Suction line should always be equal in size to the suction port. <b>Never</b> reduce it.                                                                                                                                                         |
|                             | 9) Vane does not move freely.                                                                        | 9)       | Contamination in the fluid or a burr in the vane slot can cause a vane to bind up. Proper filtration and/or deburring of the vane slots is required.                                                                                             |
|                             | 10) Vane is installed incorrectly.                                                                   | 10       | ) Vanes must be mounted with the rounded edge toward the ring.                                                                                                                                                                                   |
|                             | 11) A vane is missing.                                                                               | 11       | ) Make sure all vane slots have a vane in them.                                                                                                                                                                                                  |
|                             | 12) Port plates installed incorrectly.                                                               | 12       | e) Plates must be installed so that the arrows point in the same direction as the rotational arrows on the pump body.                                                                                                                            |
| Pump will<br>not prime      | 1) Shaft rotation in the wrong direction.                                                            | 1)       | When installing a pump, always jog the electric motor to check for proper shaft rotation. Rotation should only be clockwise (right hand) for PVX pumps.                                                                                          |
|                             | 2) Air leak in the suction line.                                                                     | 2)       | Make sure all fittings are tight.                                                                                                                                                                                                                |
|                             | 3) Pump is air bound.                                                                                | 3)       | Use an air bleed valve to void the pump and suction line of air.                                                                                                                                                                                 |
|                             | 4) Fluid level in the reservoir is too low.                                                          | 4)       | Fill the reservoir so that the fluid level is well above the end of the suction line.                                                                                                                                                            |
|                             | 5) Stroke limiter is turned in too far.                                                              | 5)       | Flow should not be reduced more than 50% of maximum. Turn CW to restrict flow (see chart, page 41).                                                                                                                                              |
|                             | 6) Suction port dust plug left in place.                                                             | 6)       | Remove plug.                                                                                                                                                                                                                                     |
| Pump is<br>unstable         | <ol> <li>Contamination in the compensator.</li> <li>Pressure ring is not moving properly.</li> </ol> | 1)<br>2) | Thoroughly clean the control orifices and check filtration. Control piston should be checked for freedom of movement.                                                                                                                            |

#### Pump is too hot

- 1) Case drain line is installed too close to the pump inlet line.
- 2) Reservoir is undersized. Rule of thumb is a minimum or 2 to 3 times pump output flow.
- n.
- for freedom of movement.

- 1) The case drain and pump inlet should be separated by a baffle in the reservoir.
- 2) Add a cooler.

### POWRFLOW™ PVX VANE PUMPS



PVX VANE PUMPS ARE DESIGNED TO BE QUIET.

| Irreversible Hearing Loss | 180 dB     | Rocket Launch Pad                            |
|---------------------------|------------|----------------------------------------------|
|                           | 170 dB     |                                              |
|                           | 160 dB     |                                              |
|                           | 150 dB     |                                              |
| Painfully Loud            | 140 dB     | Aircraft Carrier Flight Deck                 |
|                           | 130 dB     |                                              |
| Uncomfortably Loud        | 120 dB     | Car Horn at 3 Feet                           |
| Extremely Loud            | 110 dB     | Pile Driver                                  |
| Very Loud                 | 100 dB     | Gas Lawn Mower                               |
|                           | 90 dB      |                                              |
| Annoying                  | 80 dB      | Food Blender at 3 Feet PVX60 at 1800 rpm     |
|                           | 70 dB      | PVX60 at 1800 rpm<br>and 3000 psi, Full Flow |
| Intrusive                 | 60 dB      | Conversational Speech                        |
| Moderate                  | 50 dB 49 d | B PVX8 at 1200 rpm and 500 psi, Deadhead     |
| Quiet                     | 40 dB      | and 300 psi, Beautiead                       |
| Very Quiet                | 30 dB      | Quiet Rural Area at Night                    |
|                           | 20 dB      |                                              |
| Barely Audible            | 10 dB      | Faint Rustling Leaves                        |
| Inaudible                 | 0 dB       |                                              |

#### PowrFlow™ PVX Vane Pumps Are Quiet.

PVX Vane Pumps are designed to be quiet. Using them in your machinery designs makes it easier to meet government mandated or purchaser required sound levels.

And, vane pumps are inherently smooth operating. Piston pumps exert push-pull forces, which can lead to hydraulic line pulsation and hammering. PVX Vane Pumps maintain constant system pressure to eliminate pulsations and associated noise.

# Exclusive 3 Year Warranty

Continental Hydraulics
Division warrants all vane
pumps supplied by
Continental Hydraulics
against defects in material
and workmanship under
normal use and service for
three years from the date of
shipment.

This warranty does not cover ordinary wear and tear, abuse, misuse, overloading, altered products, use of improper fluid, or use of materials not of Continental Hydraulics manufacture or supply.

### POWERFLOW<sup>TM</sup> PVX VANE PUMPS



#### YOUR SOURCE FOR VANE PUMPS FOR THE MOST DEMANDING APPLICATIONS



#### Why settle for "Close Enough" when you need hydraulics?

Continental Hydraulics offers a complete line of products to meet your need for reliable, precise fluid power. In addition to the PVX Vane Pumps shown in this catalog, Continental also offers vane and piston pumps, a full line of control valves, integrated hydraulic circuits, and hydraulic power units.

Continental's products are used in diverse applications such as plastic molding machinery, machine tools, pulp and paper machines, marine auxiliary power controls and deck handling equipment, and masonry product production equipment.

### Distributors who know how

to help — Anyone can say,
"Here's our catalog, take your pick."
Continental Distributors work with
you to find out what you need, and
with our engineers to make sure
you get it.

Service and support — To provide maximum service and assistance, Continental Hydraulics maintains a strong distribution network, with representatives throughout North America and around the world. The average Continental Distributor has been with us for 15 years. He's got repair

and replacement parts, and the skill to solve your hydraulics problem.

Our Distributors work hand-inhand with our Engineers to select components and build systems that will meet your toughest specifications. And they'll suggest creative solutions that can help save money or enhance performance.

Whether you need a complete hydraulic power supply or a single directional control valve, come to Continental.

### **ABOUT CONTINENTAL HYDRAULICS**

Rugged, durable, high-performance, efficient—the reason Continental Hydraulics' products are used in some of the most challenging applications across the globe. With a commitment to quality customer support and innovative engineering, Continental's pumps, valves, power units, mobile and custom products deliver what the markets demand. Continental has been serving the food production, brick and block, wood products, automotive and machine tool industries since 1962. Learn how our products survive some of the most harsh environments.

### SALES@CONTHYD.COM

4895 12th Avenue East, Shakopee, MN 55379 / continentalhydraulics.com / 952-895-6400

CONTINENTAL HYDRAULICS.